Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (3), P. 319-324 (2017).
DOI: https://doi.org/10.15407/spqeo20.03.319


References

1.    Lee T.D., Low F.E. and Pines D. The motion of slow electrons in a polar crystal. Phys. Rev. 1953. 90, No. 2. P. 297 302.
https://doi.org/10.1103/PhysRev.90.297
 
2.    Pekar S.I. Investigations on the Electron Theory of Crystals. Moscow-Leningrad: Gostekhteorizdat, 1951 (in Russian).
 
3.    Gross E.P. Small oscillation theory of the interaction of a particle and scalar field. Phys. Rev. 1955. 100, No. 6. P. 1571–1578.
https://doi.org/10.1103/PhysRev.100.1571
 
4.    Tulub A.V. Account of recoil in non-relativistic theory of field. Vestnik Leningrad. Gosuniversiteta. Ser. 4. Fizika, khimiya. 1960. 15, No. 22. P. 104–118 (in Russian).
 
5.    Tulub A.V. Slow electrons in polar crystals. Zhurnal Eksperiment. Teor. Fiziki. 1962. 41, No. 6. P. 1828–1838 (in Russian).
 
6.    Tulub A.V. Comments on polaron-phonon scattering theory. Theoretical and Mathematical Physics. 2015. 185, No. 1. P. 1533–1546.
https://doi.org/10.1007/s11232-015-0363-2
 
7.    Kashirina N.I., Lakhno V.D., Tulub A.V. The virial theorem and the ground state problem in polaron theory. Journal of Experimental and Theoretical Physics. 2012. 114, No. 5. P. 867–869.
https://doi.org/10.1134/S1063776112030065
 
8.    Kashirina N.I. Application of quantum field theory methods to the development of the translational-invariant polaron and bipolaron theory. Ukr. J. Phys. 2014. 59, No. 11. P. 1088–1092.
https://doi.org/10.15407/ujpe59.11.1088
 
9.    Klimin S.N., Devreese J.T. Comments on "Translation-invariant bipolarons and the problem of high-temperature Superconductivity". Solid State Communs. 2013. 153, No. 1. P. 58–61.
https://doi.org/10.1016/j.ssc.2012.10.012
 
10.    Porsch M., Röseler J. Recoil effects in the polaron problem. phys. status solidi (b). 1967. 23, No. 1.