Semiconductor
Physics, Quantum Electronics & Optoelectronics. 2017, 20 (3),
P. 349-354 (2017). References 1. Bosanac L., Aabo T., Bendix P. M. and Oddershede L.B. Efficient optical trapping and visualization of silver nanoparticles. Nano Lett. 2008. 8, No. 25. P. 1486-1491.https://doi.org/10.1021/nl080490+ 2. Righini M., Ghenuche P., Cherukulappurath S. et al. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical an¬tennas. Nano Lett. 2009. 9, No. 10. P. 3387-1391. https://doi.org/10.1021/nl803677x 3. Brzobohaty O. Šiler M., Trojek J. et al. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters. Opt. Exp. 2015. 23. P. 8179-8189. https://doi.org/10.1364/OE.23.008179 4. Hansen P.M., Bhatia V.K., Harrit N., Oddershede L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 2005. 5. 1937-1942. https://doi.org/10.1021/nl051289r 5. Agarwal Ritesh, Ladavac Kosta, Roichman Yael, Yu Guiha, Lieber C.M., Grier D.G. Manipulation and assembly of nanowires with holographic optical traps. Opt. Exp. 2005. 13, No. 22. P. 8906-8912. https://doi.org/10.1364/OPEX.13.008906 6. Saktioto T., Irawan D., Thammawongsa N. and Yupapin P.P. Drug delivery system model using optical tweezer spin control. J. Biosens. Bioelectron. 2014. 5, No. 3. P. 1000159 (5 p.). 7. Maragò O.M., Jones P.H., Gucciardi P.G., Volpe G., Ferrari A.C. Optical trapping and manipulation of nanostructures. Nature Nanotechnology. 2013. 8. P. 807-819. https://doi.org/10.1038/nnano.2013.208 8. Dholakia K., MacDonald M.P. and G.C. Spalding. Microfluidic sorting in an optical lattice. Nature. 2003. 426. P. 421. https://doi.org/10.1038/nature02144 9. Donato M.G., Vasi S., Sayed R. et al. Optical trapping of nanotubes with cylindrical vector beams. Opt. Lett. 2012. 37, No. 16. P. 3381-3383. https://doi.org/10.1364/OL.37.003381 10. Irrera A., Artoni P., Saija R. et al. Size-scaling in optical trapping of silicon nanowires. Nano Lett. 2011. 11, No. 11. P. 4879-4884. https://doi.org/10.1021/nl202733j 11. Yan Zijie, Jureller J. E., Sweet J. et al. Three-dimensional optical trapping and manipulation of single silver nanowires. Nano Lett. 2012. 12. P. 5155-5161. https://doi.org/10.1021/nl302100n 12. Ottevaere H., de Coster D., Vervaeke M. et al. Dual fiber optical trapping in a polymer-based microfluidic chip. Proc. of SPIE. 2016. 9888. P. 98880B-1. 13. Ashkin A. and Dziedzic J.M. Optical trapping and manipulation of single cell using infrared laser beams. 1987. Nature. 330. P. 769. https://doi.org/10.1038/330769a0 14. Yanhua W., Dong S., Wenhao H. and Youfu L. Path planning in automated manipulation of biological cells with optical tweezers. IEEE International Conference on Control and Automation, 2009. P. 2021-2026. 15. In Soo Park, Se Hee Park, Sang Woo Lee, Dae Sung Yoon, and Beop-Min Kim. Quantitative characterization for dielectrophoretic behavior of biological cells using optical tweezers. Appl. Phys. Lett. 2014. 104. P. 053701. https://doi.org/10.1063/1.4862746 16. Khan M., Mohanty S.K. and Sood A.K. Optically driven red blood cell rotor in linearly polarized laser tweezers. Pramana J. Phys. 2005. 65. P. 777-786. https://doi.org/10.1007/BF02704075 17. Neuman K.C., Chadd E.H., Liou G.F., Bergman K. and Block S.M. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 1999. 77, No. 5. P. 2856-2863. https://doi.org/10.1016/S0006-3495(99)77117-1 18. Samadi A., Zhang C., Chen J., Reihani S.N. and Zhigang C. Evaluating the toxic effect of an antimicrobial agent on single bacterial cells with optical tweezers. Biomedical. Opt. Lett. 2014. 6. P. 112-117. 19. Baojun L., Hongbao X. and Qingyuan L. Non-contact fiber-optical trapping of motile bacteria: Dynamics observation and energy estimation. Nature Sci. Repts. 2014. 4, Article number 6576. 20. Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 1970. 24. P. 156. https://doi.org/10.1103/PhysRevLett.24.156 21. Butykai A., Mor F.M., Gaál R., Domínguez-García P., Forró L., Jeney S. Calibration of optical tweezers with non-spherical probes via high-resolution detection of Brownian motion. Computer Phys. Commun. 2015. 196. P. 599-610. https://doi.org/10.1016/j.cpc.2015.06.024 22. Ashkin A. Forces of a single beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 1992. 61, No. 2. P. 569-582. https://doi.org/10.1016/S0006-3495(92)81860-X 23. S. Sato and H. Inaba, "Optical trapping and manipulation of microscopic particles and biological cells by laser beams. Opt. Quant. Elect. 1996. 28, No. 1. P. 1-16. https://doi.org/10.1007/BF00578546 24. Mirsaidov U., Timp W., Timp K. et al. Optimal optical trap for bacterial viability. Phys. Rev. E. 2008. 78. P. 021910-1-7. https://doi.org/10.1103/PhysRevE.78.021910 25. Phillips D.B., Padgett M.J., Hanna S. et al. Shape-induced force fields in optical trapping. Nature Phot. 2014. 8. P. 400-405. https://doi.org/10.1038/nphoton.2014.74 26. Wang M.D., Yin Hong, Landick R., Gelles J., and Block S.M. Stretching DNA with optical tweezers. Biophysical J. 1997. 72. P. 1335-1346. https://doi.org/10.1016/S0006-3495(97)78780-0 27. Heller I., Hoekstra T.P., King G.A. et al. Optical tweezers analysis of DNA-protein complexes Chem. Rev. 2014. 114, No. 6. P. 3087-3119. https://doi.org/10.1021/cr4003006 28. Yuanjie Pang, Hanna Song, Jin H. Kim, Ximiao Hou, Wei Cheng. Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single molecule resolution. Nature Nanotechnology. 2014. 9. P. 624-630. https://doi.org/10.1038/nnano.2014.140 29. Aubin-Tam Marie-Eve, Appleyard D.C., Ferrari E. et al. Adhesion through single peptide aptamers. J. Phys. Chem. 2011. 115, No. 16. P. 3657-3664. https://doi.org/10.1021/jp1031493 |