Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (3), P. 369-374 (2017).
DOI: https://doi.org/10.15407/spqeo20.03.369


References

1.    Kuhs W.F., Nitsche R., Scheunemann K. Vapour growth and lattice data of new compounds with icosahedral structure of the type Cu6PS5Hal (Hal=Cl, Br, I). Mat. Res. Bull. 1976. 11. P. 1115–1124.
https://doi.org/10.1016/0025-5408(76)90010-6
 
2.    Kuhs W.F., Nitsche R., Scheunemann K. The argyrodites – a new family of the tetrahedrally close-packed structures. Mat. Res. Bull. 1979. 14. P. 241–248.
https://doi.org/10.1016/0025-5408(79)90125-9
 
3. Studenyak I.P., Kranjčec M. Disordering Effects in Superionic Conductors with Argyrodite Structure. Uzhhorod: Hoverla, 2007 (in Ukrainian).
 
4. Studenyak I.P., Kus P. Structural Disorder in Crystalline and Amorphous Superionic Conductors. Uzhhorod: Hoverla, 2016.
 
5. Andrae H., Blachnik R. Metal sulphide-tetraphosphorusdecasulphide phase diagrams. J. Alloys and Compounds. 1992. 189. P. 209–215.
https://doi.org/10.1016/0925-8388(92)90709-I
 
6. Fiechter S., Gmelin E. Thermochemical data and phase transition of argyrodite-type ionic conductors Me6PS5Hal and Me7PS6 (Me = Cu, Ag; Hal = Cl, Br, I). Thermochimica Acta. 1985. 87. P. 319–334.
https://doi.org/10.1016/0040-6031(85)85351-X
 
7. Pogodin A.I., Barchiy I.E., Kokhan A.P. The Cu2S–Cu7PS6–Cu6PS5I quasi-ternary system. Chem. Met. Alloys. 2013. 6. P. 188-191.
 
8. Studenyak I.P., Kranjčec M., Kovacs Gy.Sh., Panko V.V., Mitrovcij V.V., Mikajlo O.A. Structural disordering studies in Cu6+δPS5I single crystals. Mater. Sci. Eng. 2003. B97. P. 34–38.
https://doi.org/10.1016/S0921-5107(02)00392-6
 
9. Gagor A., Pietraszko A., Kaynts D. Diffusion paths formation for Cu+ ions in superionic Cu6PS5I single crystals studied in terms of structural phase transition. J. Solid State Chem. 2005. 178. P. 3366–3375.
https://doi.org/10.1016/j.jssc.2005.08.015
 
10. Altomare A., Burla M.C., Camalli M., Carrozzini B., Cascarano G., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G., Rizzi R. EXPO: a program for full powder pattern decomposition and crystal structure solution. J. Appl. Crystallogr. 1999. 32. P. 339–340.
https://doi.org/10.1107/S0021889898007729
 
11. Altomare A., Cuocci C., Giacovazzo C., Moliterni A., Rizzi R., Corriero N., Falcicchio A. EXPO2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 2013. 46. P. 1231–1235.
https://doi.org/10.1107/S0021889813013113
 
12. Rietveld H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969. 2. P. 65–71.
https://doi.org/10.1107/S0021889869006558
 
13. McCusker L.B., Von Dreele R.B., Cox D.E., Louër D., Scardi P. Rietveld refinement guidelines. J. Appl. Crystallogr. 1999. 32. P. 36–50.
https://doi.org/10.1107/S0021889898009856
 
14. Studenyak I.P., Stefanovich V.O., Kranjcec M., Desnica D.I., Azhnyuk Yu.M., Kovacs Gy.Sh., Panko V.V. Raman scattering studies of Cu6PS5Hal (Hal = Cl, Br, I) fast-ion conductors. Solid State Ionics. 1997. 95. P.221–225.
https://doi.org/10.1016/S0167-2738(96)00477-8
 
15. Kranjčec M., Studenyak I.P., Buchuk R.Yu., Stephanovich V.O., Kökényesi S., Kis-Varga M. Structural properties and Raman scattering in Cu6PS5X (X = I, Br) nanocrystalline solid electrolytes. Solid State Ionics. 2008. 179. P.218–221.
https://doi.org/10.1016/j.ssi.2007.12.043