Semiconductor Physics, Quantum Electronics & Optoelectronics. 2017, 20 (3), P. 375-381 (2017).
DOI: https://doi.org/10.15407/spqeo20.03.375


References

1.    Slack G.A. New Materials and Performance Limits for Thermoelectric Cooling, in CRC Handbook of Thermoelectrics. D.M. Rowe (Eds). CRC Press, Boca Raton, 1995, P. 407−440.
https://doi.org/10.1201/9781420049718.ch34
 
2.    Slack G.A., Tritt T.M., Kanatzidis M.G., Lyon H.B., Jr and Mahan G.D. Design concepts for improved thermoelectric materials, Mat. Res. Soc. Symp. Proc., Warrendale, Pennsylvania: MRS Press, 1997, pp 47−54.
 
3.    Shevelkov A.V., Kelm E.A., Olenev A.V., Kulbachinskii V.A., Kytin V.G. Anomalously low thermal conductivity and thermoelectric properties of new cationic clathrates in the Sn-In-As-I system. Semiconductors. 2011. 45. P. 1399−1403.
https://doi.org/10.1134/S106378261111025X
 
4.    Borshch N.A., Pereslavtseva N.S., Kurganskii S.I. Electronic structure of Zn-substituted germanium clathrates. Semiconductors. 2009. 43. P. 563−567.
https://doi.org/10.1134/S1063782609050030
 
5.    Sh. Ibrahim Moustafa, El-din H. Etaiw Safaa, Supramolecular host-guest systems as frameworks for excitation energy transfer. Spectrochimica Acta. 2002. 58. P. 373−378.
https://doi.org/10.1016/S1386-1425(01)00546-7
 
6.    Bishchaniuk T.M., Grygorchak I.I. Colossal magnetocapacitance effect at room temperature. Appl. Phys. Lett. 2014. 104. P. 203104-(1–3).
 
7.    Lies R.M.A. (ed.) Preparation and Crystal Growth of Materials with Layered Structures. Dordrecht-Boston, 1977. P. 225−254.
 
8.    Friend R.H., Yoffe A.D. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 1987. 1. P. 1−94.
https://doi.org/10.1080/00018738700101951
 
9.    Chernykh E.V., Brichkin S.B. Supramolecular complexes based on cyclodextrins. High Energy Chemistry. 2010. 44. P. 83−100.
https://doi.org/10.1134/S0018143910020013
 
10.    Grygorchak Ivan, Ivashchyshyn Fedir, Stakhira Pavlo, Reghu Renji R., Cherpak Vladyslav, and Grazulevicius Juozas Vidas. Intercalated nanostructure consisting of inorganic receptor and organic ambipolar semiconductor. J. Nanoelectron. and Optoelectron. 2013. 8. P. 292−296.
https://doi.org/10.1166/jno.2013.1464
 
11.    Stoınov Z.B., Grafov B.M., Savova-Stoinova B.S., Elkin V.V. Electrochemical Impedance. Nauka, Moscow, 1991, P. 336 (in Russian).
 
12.    Impedance Spectroscopy, Theory, Experiment and Application. E. Barsoukov, J.R. Macdonald (Eds.), Wiley Interscience, Canada, 2005, P. 585.
 
13.    Pollak M., Geballe T.H. Low frequency conductivity due to hopping processes in silicon, Phys. Rev. 1961. 6. P. 1743−1753.
https://doi.org/10.1103/PhysRev.122.1742
 
14.    Olekhnovich N.M., Moroz I.I., Pushkarev A.V., Ra-dyush Yu.V., Salak A.N., Vyshatko N.P., Ferrei¬ra V.M. Temperature impedance spectroscopy of (1−x)Na1/2Bi1/2TiO3−xLaMg1/2Ti1/2O3 solid so¬lu¬tions. Physics of the Solid State. 2008. 50. P. 490−495.
https://doi.org/10.1134/S1063783408030165
 
15.    Demin R.V., Koroleva L.I., Muminov A.Z., Mukovskii Ya.M. Giant volume magnetostriction and colossal magnetoresistance in La0.7Ba0.3MnO3 at room temperature. Physics of the Solid State. 2006. 48. P. 322−325.
https://doi.org/10.1134/S1063783406020211
 
16.    Bisquert J., Randriamahazaka H., Garcia-Belmonte G. Inductive behaviour by charge-transfer and relaxation in solid-state electrochemistry. Electrochimica Acta. 2005. 51. P. 627−640.
https://doi.org/10.1016/j.electacta.2005.05.025
 
17.    Mora-Sero I., Bisquert J. Implications of the negative capacitance observed at forwards bias in nanocomposite and polycrystalline solar cells. Nano Lett. 2006. 6. P. 640−650.
https://doi.org/10.1021/nl052295q
 
18.    Ivashchyshyn F., Grygorchak I., Stakhira P., Cherpak V., Micov M. Nonorganic semiconductor – Conductive polymer intercalate nanohybrids: Fabrication, properties, application. Curr. Appl. Phys. 2012. 12. P. 160−165.
https://doi.org/10.1016/j.cap.2011.05.032
 
19.    Bishchaniuk T.M., Grygorchak I.I., Fechan A.V., Ivashchyshyn F.O. Semiconductor clathrates with a periodically modulated topology of a host ferroelectric liquid crystal in thermal, magnetic, and light-wave fields. Techn. Phys. 2014. 59. P. 1085−1087.
https://doi.org/10.1134/S1063784214070068
 
20.    Žukowski P.V., Partyka J., Wagierek P., Shostak Yu., Sidorenko Yu., Rodzik A. Dielectric properties of Cd1−xFexSe compounds. Semiconductors. 2000. 34. P. 1124−1127.
https://doi.org/10.1134/1.1317568
 
21.    Kimura T., Goto T., Shintani H., Ishizaka K., Arima T., Tokura Y. Magnetic control of ferroelectric polarization. Nature. 2003. 426. P. 55−58.
https://doi.org/10.1038/nature02018
 
22.    Anisimova N.I., Bordovskii V.A., Grabko G.I., Castro R.A. Specific features of the photodielectric effect in amorphous As2Se3 layers. Techn. Phys. Lett. 2013. 39. P. 98−100.
https://doi.org/10.1134/S1063785013010318
 
23.    Rozhkov V.A., Trusova A.Yu. Silicon metal-dielectric-semiconductor varicaps with an yttrium oxide dielectric. Techn. Phys. Lett. 1997. 23. P. 475−477.
https://doi.org/10.1134/1.1261672
 
24.    Pham Nam Hai, Shinobu Ohya, Masaaki Tanaka, Stewart E. Barnes & Sadamichi Maekawa, Electromotive force and huge magnetoresistance in magnetic tunnel junctions. Nature. 2009. 458. P. 489−493.
https://doi.org/10.1038/nature07879
 
25.    Supriyo Datta, Proposal for a "spin capacitor". Appl. Phys. Lett. 2005. 83. P. 013115(1−3).