Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (3) P. 225-230 (2018).
DOI: https://doi.org/10.15407/spqeo21.03.225


References

1. Bratus' V.Ya., Melnik R.S., Okulov S.M., Rodionov V.N., Shanina B.D., Smoliy M.I. A new spin one defect in cubic SiC. Physica B. 2009. 404. P. 4739–4741.
https://doi.org/10.1016/j.physb.2009.08.124

2. Bratus V., Melnyk R., Okulov S., Shanina B., Golub V., Makeeva I. An EPR study of defects in neutron-irradiated cubic SiC crystals. Mater. Sci. Forum. 2013. 740–742. P. 361–364.
https://doi.org/10.4028/www.scientific.net/MSF.740-742.361

3. Isoya J., Umeda T., Mizuochi N., Son N.T., Janzen E., Ohshima T. EPR identification of intrinsic defects in 4H-SiC. physica status solidi (b). 2008. 245, No 7. P. 1298–1314.

4. Son N.T., Magnusson B., Zolnai Z., Ellison A., Janzen E. Defects in high-purity semi-insulating SiC. Mater. Sci. Forum. 2004. 457-460. P. 437–442.
https://doi.org/10.4028/www.scientific.net/MSF.457-460.437

5. Itoh H., Kawasuso A., Ohshima T., Yoshikawa M., Nashiyama I., Tanigawa S., Misawa S., Okumura H., Yoshida S. Intrinsic defects in cubic silicon carbide. physica status solidi (a). 1997. 162. P. 173–198.

6. Bratus' V.Ya., Melnyk R.S., Shanina B.D., Okulov S.M. Thermal annealing and evolution of defects in neutron-irradiated cubic SiC. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2015. 18, No 4. P. 403–409.
https://doi.org/10.15407/spqeo18.04.403

7. Schollea A., Greulich-Weber S., Raulsc E., Schmidtd W.G., Gerstman U. Fine structure of triplet centers in room temperature irradiated 6H-SiC. Mater. Sci. Forum. 2010. 645-648. P. 403–406.
https://doi.org/10.4028/www.scientific.net/MSF.645-648.403

8. Stevens K. Matrix elements and equivalent operators bound with magnetic properties of rare-earth ions. Proc. Phys. Soc. A (London). 1952. 65. P. 209.
https://doi.org/10.1088/0370-1298/65/3/308

9. Abragam A., Bleney B. Electron Paramagnetic Resonance of Transition Ions. Vol. 2. Clarendon Press, Oxford, 1970.

10. Knox R.S., Gold A. Symmetry in the Solid State. Ch.​12. New York, Publ. W.A. Benjamin, Inc., 1964.

11. Wertz J.E., Bolton J.R. In book: Electron Spin Resonance. Ch. 10. New York, McGraw-Hill Book Co., 1972.

12. Watson R.E., Freeman A.J. Covalency in crystal field theory: KNiF3. Phys. Rev. A. 1964. 134. P. 1526.
https://doi.org/10.1103/PhysRev.134.A1526

13. Hohenberg P. and Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964. 136. P. B864.
https://doi.org/10.1103/PhysRev.136.B864

14. Kohn W. and Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965. 140. P. A1133.
https://doi.org/10.1103/PhysRev.140.A1133

15. Blaha P., Schwarz K., Madsen G.K.H., Kvasnicka D. and Luitz J. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna, 2001.

16. Weinert M., Wimmer E. and Freeman A.J. Total-energy all-electron density functional method for bulk solids and surfaces. 1982. Phys. Rev. B26. P. 4571
https://doi.org/10.1103/PhysRevB.26.4571

17. Perdew J.P., Bueke K., Ernzerhof M. Generalised gradient approximation made simple. Phys. Rev. Lett. 1996. 77. P. 3865.
https://doi.org/10.1103/PhysRevLett.77.3865

18. Varshalovich D.A., Moscalev A.N., Khersonskii V.K. Quantum Theory of Angular Momentum (in Russian). Publ. House "Nauka", Leningrad, 1975 [Published by World Scientific Publishing Co. Pte. Ltd., 1988]; Friedman B., Russek J. Addition theorems for spherical waves. Quart. of Appl. Math. 1954. 12, No 1. P. 13–23.