Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (3), P. 231-237 (2018).
DOI: https://doi.org/10.15407/spqeo21.03.231


References

1. Deigen M.F. and Pekar S.I. On the states of conduction electrons in ideal homeopolar crystals. Zh. Eksp. Teor. Fiz. 1950. 21, No 7. P. 803–808.

2. Kukushkin L.S. Electron-phonon states in homopolar crystals caused by a strong magnetic field. Soviet Physics JETF. 1970. 30, No 4. P. 667–670.

3. Holstein T. Studies of polaron motion. Part I. The molecular-crystal model. Annals of Physics. 1959. 8. P. 325–342.
https://doi.org/10.1016/0003-4916(59)90002-8

4. Rashba E.I. Theory of the strong interaction of electron excitations with lattice vibrations in molecular crystals. II. Optics and spectroscopy. 1957. 2, No 1. P. 88–98.

5. Pekar S.I. Research in Electron Theory of Crystals. United States Atomic Energy Commission, Washington, 1963.

6. Emin D., Ye J. and Beckel C.L. Electron-correlation effects in one-dimensional large-bipolaron formation. Phys. Rev. B. 1992. 46, No 17. P. 10710–10720.
https://doi.org/10.1103/PhysRevB.46.10710

7. Kashirina N.I. and Lakhno V.D. Large-radius bipolaron and the polaron-polaron interaction. Physics Uspekhi. 2010. 53, No 5. P. 431–453.
https://doi.org/10.3367/UFNe.0180.201005a.0449

8. Kashirina N.I. and Lakhno V.D. Application of Gaussian functions with exponentially correlated factors for the simulation of localized and self-localized states in polar media. Mathematical Biology and Bioinformatics. 2015. 10, No 2. P. 273–301. doi: 10.17537/2017.12.273.
https://doi.org/10.17537/2017.12.273

9. Kashirina N.I. and Lakhno V.D. Mathematical modeling of self-localized states in condensed media. Moscow, Publ. House FIZMATLIT. 2013.

10. Kashirina N.I., Lakhno V.D. and Sychyov V.V. Polaron effects and electron correlations in two-electron systems: Arbitrary value of electron-phonon interaction. Phys. Rev. B. 2005. 71, No 13. P. 134301-1–134301-13.
https://doi.org/10.1103/PhysRevB.71.134301

11. Lakhno V.D. and Sultanov V.B. On the possibility of bipolaronic states in DNA. Biofizika. 2011. 56, No 2. P. 230–234.

12. Kashirina N.I. and Lakhno V.D. The continuous model of the one-dimensional Holstein bipolaron. Mathematical Biology and Bioinformatics. 2014. 9, No 2. P. 9–18.

13. Porath D., Bezryadin A., de Vries S. and Dekker C. Direct measurement of electrical transport through DNA molecules. Nature. 2000. 403 (6770). P. 635–638. doi: 10.1038/35001029.
https://doi.org/10.1038/35001029

14. Kasumov A.Y., Kociak M., Guéron S., Reulet B., Volkov V.T., Klinov D.V. and Bouchiat H. Proximity-Induced Superconductivity in DNA. Science. 2001. 291 (5502). P. 280–282. doi: 10.1126/science.291.5502.280.
https://doi.org/10.1126/science.291.5502.280

15. Lakhno V.D. A translation invariant bipolaron in the Holstein model and superconductivity. SpringerPlus. 2016. 5 (art. № 1277). P. 1–18. https://doi.org/10.1186/s40064-016-2975-x.
https://doi.org/10.1186/s40064-016-2975-x