Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (3), P. 238-248 (2018).
DOI: https://doi.org/10.15407/spqeo21.03.238


References

1. Bleaney B., Bowers K.D. Anomalous paramagnetism of copper acetate. Proc. Roy. Soc. 1952. 214A, No 1119. P. 451–465.
https://doi.org/10.1098/rspa.1952.0181

2. Bleaney B., Bowers K.D. Anomalous paramagnetism and exchange interaction in copper acetate. Phil. Mag. 1952. 43. P. 372–374.
https://doi.org/10.1080/14786440308520169

3. Abe H., Shimada J. Paramagnetic resonance in copper acetate monohydrate. Phys. Soc. Japan. 1957. 12, No 11. P. 1255–1258.
https://doi.org/10.1143/JPSJ.12.1255

4. Abragam A., Bleaney B. Electron Paramagnetic Resonance of Transition Ions (Oxford Classic Texts in the Physical Sciences), Reprint Edition. University Press, Oxford, 2012. 5. Jing Chen, You-Juan Zhang, Kun-Tao Huang, Qiang Huang, Jun-Jie Wang. Synthesis, structures, and properties of two new binuclear complexes based on carboxyl-substituted nitronyl nitroxide: [M2(NITpBA)4(H2O)2] (M = Zn and Cu). Open Journal of Inorganic Chemistry. 2013. 3, No. 2. Article ID:30835, 7 p. doi:10.4236/ojic.2013.32005.
https://doi.org/10.4236/ojic.2013.32005

6. Štarha P., Trávníček Z., Herchel R., Popa I., Suchý P., Vančo J. Dinuclear copper(II) complexes containing 6-(benzylamino)purines as bridging ligands: synthesis, characterization, and in vitro and in vivo antioxidant activities. Journal of Inorganic Biochemistry. 2009. 103, No. 3. P. 432–440.
https://doi.org/10.1016/j.jinorgbio.2008.12.009

7. van Albada G.A., Mutikainen I., Turpeinen U. & Reedijk J. Crystal structure, magnetism and spectroscopy of two strongly antiferromagnetically coupled dinuclear Cu(II) paddlewheel-like compounds with 4-azabenzimidazole as a ligand. Polyhedron. 2006. 25, No. 17. P. 3278–3284. doi: 10.1016/j.poly.2006.06.009.
https://doi.org/10.1016/j.poly.2006.06.009

8. De Meester P. and Skapski A.C. Crystal structure of dichlorotetra-μ-adenine-dicopper(II) chloride hexahydrate. J. Chem. Soc. A. 1971. 13. P. 2167–2169.
https://doi.org/10.1039/J19710002167

9. Sonnenfroh D., Kreilick R.W. Exchange coupling in copper dimers with purine ligands. Inorganic Chemistry. 1980. 19, No 5. P. 1259–1262.
https://doi.org/10.1021/ic50207a030

10. Terzis A., Beauchamp A.L., Rivest R. Crystal and molecular structure of tetra-μ-adenine-diaquodicopper(II) perchlorate dihydrate, [Cu2(C5H5N5)4(H2O)2](ClO4)4·2H2O. Inorg. Chem. 1973. 12, No 5. P. 1166–1170.
https://doi.org/10.1021/ic50123a039

11. González-Pérez J.M., Alarcórn-Payer C., Castiňeiras A., Pivetta T. A windmill-shaped hexacopper(ii) molecule built up by template core-controlled expansion of diaquatetrakis(μ2-adeninato-N3, N9)dicopper(II) with aqua (oxydiacetato)copper(II). Inorg. Chem. 2006. 45, No 2. P. 877–882; doi: 10.1021/ic051965s.
https://doi.org/10.1021/ic051965s

12. Mealli C, Zanobini F. X-ray crystal structure of the antiferromagnetic binuclear dichloro-μ-dichloro-μ-di(1,8-naphthyridine)-dicopper complex. J. Chem. Soc. Chem. Commun. 1982. 2. P. 97–98.
https://doi.org/10.1039/C39820000097

13. Emerson K., Emad A., Brookes R.W., Martin R.L. Two magnetically subnormal copper halide complexes with 1,8-naphthyridine. Inorg. Chem. 1973. 12, No 5. P. 978–981.
https://doi.org/10.1021/ic50123a002

14. Maloň M., Trávníček Z., Maryško M. et al. Metal complexes as anticancer agents 2. Iron(III) and copper(II) bio-active complexes with N6-benzylaminopurine derivatives. Inorganica Chimica Acta. 2001. 323, No 1-2. P. 119–129.
https://doi.org/10.1016/S0020-1693(01)00611-9

15. Malon M., Travnicek Z., Marysko M., Marek J., Dolezal K., Rolcik J., Strnad M. Synthesis, characterization and antitumour activity of copper(II) 6-(4-chlorobenzylamino)purine com-plexes. X-ray structure of 6-(4-chloro-benzylamino)purinium perchlorate. Trans. Met. Chem. 2002. 27. P. 580-586.
https://doi.org/10.1023/A:1019885532205

16. Trávníček Z., Maloň M., Šindelář Z. et al. Preparation, physicochemical properties and biological activity of copper(II) complexes with 6-(2-chlorobenzylamino)purine (HL1) or 6-(3-chlorobenzylamino)purine (HL2). The single-crystal X-ray structure of [Cu(H+L2)2Cl3]Cl·2H2O. J. Inorg. Biochem. 2001. 84, No 1-2. P. 23–32.
https://doi.org/10.1016/S0162-0134(00)00218-X

17. Julve M., Verdaguer M., Charlot M.F., Kahn O. Claude R. Interactions in Cu(II)Cu(II), VO(II)VO(II) and Cu(II)VO(II) pairs through oxalato bridging ligand. Inorganica Chimica Acta. 1984. 82. P. 5–12; doi.org/10.1016/S0020-1693(00)82529-3.
https://doi.org/10.1016/S0020-1693(00)82529-3

18. Kremer S. EPR spectroscopic study of S = 1, 2, and 3 spin states of tris(.mu.-hydroxo)-bridged chromium(III) dimers. Inorg. Chem. 1985. 24, No 6. P. 887–890.
https://doi.org/10.1021/ic00200a018

19. Julve M., Kahn O. Synthesis, magnetic properties and EPR of μ-oxalatotetrakis(acetyl-acetonato)diiron(III). Inorg. Chim. Acta. 1983. 76. P. L39–L41.
https://doi.org/10.1016/S0020-1693(00)81450-4

20. Duggan D.M., Hendrickson D.N. Inorg. Chem. 1975. 14. P. 1944–1956.
https://doi.org/10.1021/ic50150a042

21. Galy I., Jaud J., Kahn O., Tola P. Crystal structure and magnetic properties of Cu2(fsa)2en, CH3OH, with H4(fsa)2en = N,N′-bis(2-hydroxy, 3-carboxy-benzilidene)-1,2-diaminoethane. Inorg. Chim. Acta. 1979. 36. P. 229–236.
https://doi.org/10.1016/S0020-1693(00)89398-6

22. Kahn O., Galy J., Tola P., Coudanne H. Interaction between orthogonal magnetic orbitals in a copper(II)-oxovanadium(II) heterobinuclear complex. J. Amer. Chem. Soc. 1978. 100. P. 3931–3933; doi: 10.1021/ja00480a048.
https://doi.org/10.1021/ja00480a048

23. Kahn O. & Charlot M.F. O. Overlap density in binuclear complexes: A topological approach of the exchange interaction. Nouv. J. Chim. 1980. 4. P. 567–576.
https://doi.org/10.1007/978-94-010-9716-1_11

24. Glaser T., Teil H., Liratzis I., Weyhermueller T., Bill E. Ferromagnetic coupling by orthogonal magnetic orbitals in a heterodinuclear CuIIVIVO complex and in a homodinuclear CuIICuII complex. Inorg. Chem. 2006. 45, No. 13. P. 4889–4891; doi: 10.1021/ic0606328.
https://doi.org/10.1021/ic0606328

25. Comarmond J., Plumere P., Lehn J.M., Agnus Y., Louis R., Weiss R., Kahn O., and Morgenstern-Badarau I. Dinuclear copper(II) cryptates of macrocyclic ligands: synthesis, crystal structure, and magnetic properties. Mechanism of the exchange interaction through bridging azido ligands J. Am. Chem. Soc. 1982. 104, No. 23. P. 6330–6340; doi: 10.1021/ja00387a030.
https://doi.org/10.1021/ja00387a030

26. Uraev A.I., Vasilchenko I.S., Ikorskii V.N., Shestakova T.A., Burlov A.S. et al. Copper(II) dimers with ferromagnetic intra- and intermolecular exchange interactions. Mendeleev Communi-cations. 2005. 15, No. 4. P. 133–135; doi: 10.1070/MC2005v015n04ABEH002144.
https://doi.org/10.1070/MC2005v015n04ABEH002144

27. Ginsberg A.P., Martin R.L., Brookes R.W., and Sherwood R.C. Dimeric nickel(II)-ethylenediamine complexes. Inorg. Chem. 1972. 11, No. 12. 2884–2889.
https://doi.org/10.1021/ic50118a006

28. Kahn O., Briat B. Exchange interaction in polynuclear complexes. Part 1. – Principles, model and application to the binuclear complexes of chromium(III). J. Chem. Soc. Faraday Trans. 2. 1976. 72. P. 268–281; doi:10.1039/F29767200268.
https://doi.org/10.1039/F29767200268

29. Rohde A., Hatscher S.T., Urland W. Crystal structure and magnetic behaviour of a new lanthanide acetate Gd(HF2CCOO)3(H2O)2·H2O in comparison to Gd(H3CCOO)3(H2O)2·2H2O. J. Alloys Compd. 2004. 374. P. 137–141.
https://doi.org/10.1016/j.jallcom.2003.11.070

30. Hatscher S.T., Urland W. Ungewöhnliches Auftreten von molekularem Ferromagnetismus beim gewöhnlichen Acetat [{Gd(OAc)3(H2O)2}2]·4H2O. Angew. Chem. Int. Ed. 2003. 42. P. 2862.
https://doi.org/10.1002/anie.200250738

31. Liu S., Gelmini L., Rettig S.J., Thompson R.C., Orvig C. Synthesis and characterization of lanthanide [Ln (L)] 2 complexes of N4O3 amine phenol ligands with phenolate oxygen bridges: Evidence for very weak magnetic exchange between lanthanide ions. J. Am. Chem. Soc. 1992. 114, No. 15. P. 6081–6087.
https://doi.org/10.1021/ja00041a028

32. Plass W., Fries G. Synthese und Struktur eines zweikernigen Gadolinium(III)-Komplexes: Magnetische Austauschwechselwirkungen in alkoxyverbrückten Komplexen der Lanthanoiden. Z. Anorg. Allg. Chem. 1997. 623. P. 1205–1207.
https://doi.org/10.1002/zaac.19976230804

33. Guerriero P., Tamburini S., Vigato P.A., Benelli C. Mono-, homo- and hetero-dinuclear lanthanide(III) complexes with new acyclic compartmental schiff bases. Inorg. Chim. Acta. 1991. 189, Issue 1. P. 19–27; http://doi.org/10.1016/S0020-1693(00)80384-9.
https://doi.org/10.1016/S0020-1693(00)80384-9

34. Costes J.-P., Dahan F., Dupuis A., Lagrave S., and Laurent J.-P. Homo- (4f, 4f) and heterodimetallic (4f, 4f′) complexes. The first structurally characterized example of a heterodimetallic (Yb, La) complex (1′). Magnetic properties of 1′ and of a homodinuclear (Gd, Gd) analogue. Inorg. Chem. 1998. 37, No 1. P. 153–155; doi: 10.1021/ic9712481.
https://doi.org/10.1021/ic9712481

35. Avecilla F., Platas-Iglesias C., Rodriguez-Cortinas R. et al. J. Chem. Soc., Dalton Trans. 2002. 4658.
https://doi.org/10.1039/b206615g

36. Costes J.-P., Clemente-Juan J.M., Dahan F., Verelst M. Unprecedented ferromagnetic interaction in homobinuclear erbium and gadolinium complexes: Structural and magnetic studies. Angew. Chem. Int. Ed. 2002. 41, No. 2. P. 323–325.
https://doi.org/10.1002/1521-3773(20020118)41:2<323::AID-ANIE323>3.0.CO;2-9

37. Hongwei Hou, Gang Li, Linke Li, Yu Zhu, Xiangru Meng, and Yaoting Fan. Synthesis, crystal structures, and magnetic properties of three novel ferrocenecarboxylato-bridged lanthanide dimers. Inorg. Chem. 2003. 42, No 2. P. 428–435; doi: 10.1021/ic025753w.
https://doi.org/10.1021/ic025753w

38. Costes J.-P., Dupuis A., Laurent J.-P. Homodinuclear lanthanide complexes: Ln2L3 (H2L = tetradentate Schiff bases). Magnetic properties (solid state) and spectroscopic studies (solution). Inorg. Chem. Acta. 1998. 268, No 1. P. 125–130; doi: 10.1016/S0020-1693(97)05628-4.
https://doi.org/10.1016/S0020-1693(97)05628-4

39. Panagiotopoulos A., Zafiropoulos T.F., Perlepes S.P. et al. Molecular structure and magnetic properties of acetato-bridged lanthanide(iii) dimers. Inorg. Chem. 1995. 34, No 19. P. 4918–4920; doi: 10.1021/ic00123a029.
https://doi.org/10.1021/ic00123a029

40. John D. and Urland W. Crystal structure and magnetic behaviour of the new gadolinium complex compound Gd2(ClH2CCOO)6(bipy)2. Eur. J. Inorg. Chem. 2005. 2005. P. 4486–4489. 41. John D., Urland W. Synthese, Kristallstruktur und magnetisches Verhalten von Gd(CF2HCOO)3(phen). Z. Anorg. Allg. Chem. 2005. 631. P. 2635.
https://doi.org/10.1002/zaac.200500080

42. Rohde A., Urland W. Crystal structure and magnetic behavior of the new gadolinium complex compound [NH3C2H5][Gd(Cl2HCCOO)4]. J. Alloys Compds. 2006. 408-412. P. 618–621.
https://doi.org/10.1016/j.jallcom.2004.12.199

43. Rohde A., Urland W. Synthese, Kristallstruktur und magnetisches Verhalten von [NH3CH3][Gd(Cl2HCCOO)4]. Z. Anorg. Allg. Chem. 2005. 631. P. 417.
https://doi.org/10.1002/zaac.200400290

44. Hatscher S.T., Urland W. Ungewöhnliches Auftreten von molekularem Ferromagnetismus beim gewöhnlichen Acetat [{Gd(OAc)3(H2O)2}2]·4H2O. Angew. Chem. 2003. 115. P. 2969.
https://doi.org/10.1002/ange.200250738

45. Rohde A., Urland W. Synthese und Kristallstruktur von Ln(ClF2CCOO)3(H2O)3 (Ln = Gd, Dy, Ho, Er) und magnetisches Verhalten von Gd(ClF2CCOO)3(H2O)3. Z. Anorg. Allg. Chem. 2004. 630. P. 2434.
https://doi.org/10.1002/zaac.200400173

46. Rohde A., Urland W. Synthesis, crystal structure and magnetic behaviour of dimeric and tertameric gadolinium carboxylates with trichloroacetic acid. Royal Soc. Chem., Dalton Trans. 2006. 24. P. 2974–2978.
https://doi.org/10.1039/b600368k

47. Niu S.Y., Jin J., Jin X.L. et al. Synthesis, structure and characterization of Gd(III) dimer bridged by tetra benzoates. Solid State Sci. 2002. 4, No 8. P. 1103–1106; doi: 10.1016/S1293-2558(02)01364-X.
https://doi.org/10.1016/S1293-2558(02)01364-X

48. Lam A.W-H., Wong W.-T., Gao S. et al. Synthesis, crystal structure, and photophysical and magnetic properties of dimeric and polymeric lanthanide complexes with benzoic acid and its derivatives. Eur. J. Inorg. Chem. 2003. 2003, No 1. P. 149–163.
https://doi.org/10.1002/ejic.200390021

49. Rizzi A., Baggio R., Garland M.T., Pe-a O., Perec M. New homobinuclear carboxylate-bridged gadolinium(III) complexes. Inorg. Chim. Acta. 2003. 353. P. 315–319.
https://doi.org/10.1016/S0020-1693(03)00255-X

50. Atria A.M., Baggio R., Garland M.T., Mu-oz J.C., Pe-a O. Structural and magnetic properties of Ln(III) complexes with diimines and crotonato as a bridging ligand. Inorg. Chim. Acta. 2004. 357. P. 1997–2006.
https://doi.org/10.1016/j.ica.2003.09.016

51. John D., Urland W. Crystal structure and magnetic behaviour of the new gadolinium carboxylates Gd2(ClF2CCOO)6(hypy)2, Gd2(F3CCOO)6(hypy)2, Gd2(F2HCCOO)6(hypy)2 and Gd2(Cl2HCCOO)6(H2O)2(hypy)2. J. Eur. Inorg. Chem. 2006. 2006. P. 3503–3509. 52. Abbas G., Lan Y., Kostakis G., Anson Ch.E., Powell A.K. An investigation into lanthanide–lanthanide magnetic interactions in a series of [Ln2(mdeaH2)2(piv)6] dimers. Inorg. Chim. Acta. 2008. 361. P. 3494–3499.
https://doi.org/10.1016/j.ica.2008.03.024

53. Lin P.-H., Burchell T.J., Clérac R., Murugesu M. Dinuclear dysprosium(III) single-molecule magnets with a large anisotropic barrier. Angew. Chem., Int. Ed. 2008. 47, No 46. P. 8848–8851; doi: 10.1002/anie.200802966.
https://doi.org/10.1002/anie.200802966

54. Habib F., Murugesu M. Lessons learned from dinuclear lanthanide nano-magnets. Chem. Soc. Rev. 2013. 42, No 8. P. 3278–3288.
https://doi.org/10.1039/c2cs35361j

55. Kahn O. Molecular Magnetism. VCH Publishers, Inc., New York, N.Y., 1993. 56. White R.M. Quantum Theory of Magnetism, Magnetic Properties of Materials. 3-rd. ed., Completely Revised Edition. Springer-Verlag, Berlin-Heidelberg, 2007. 57. Mattis D.C. The Theory of Magnetism – An Introduction to the Study of Cooperative Phenomena. Harper and Row Publishers, New York, 1965. 58. Altshuler S.A., Kozyrev B.M. Electron Paramagnetic Resonance in Compounds of Transition Elements. Wiley, John & Sons, Inc., 1974. 59. Pake G.E. Paramagnetic Resonance. An Introductory Monograph, W.A. Benjamin, New York, 1962. 60. Wigner E.P Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Elsevier Science, New York, 2012. 61. Geru I.I. Appl. Magn. Res. 2000. 19. P. 563–569.
https://doi.org/10.1007/BF03162401

62. Landau L.D., Lifshitz M.E. Quantum Mechanics: Non-Relativistic Theory, Vol. 3, 3-rd ed. Butterworth-Heinemann, 1981. 63. Heine V. Group Theory in Quantum Mechanics: An Introduction to Its Present Usage. Dover Publications Inc., New York, 2007.