Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (3), P. 256-262 (2018).
DOI: https://doi.org/10.15407/spqeo21.03.256


References

1. Gribnikov Z.S. Negative differential conductivity in a multilayer heterostructure. Fizika Tekhnika Poluprovodn. 1972. 6, No 7. P. 1380–1382.

2. Hess K., Morkoç H., Shichijo H., and Streetman B.G. Negative differential resistance through real-space electron transfer. Appl. Phys. Lett. 1979. 35, No 6. P. 460–471.
ttps://doi.org/10.1063/1.91172

3. Keever M., Shichijo H., Hessatal K. Measurements of hot electron conduction and real-space transfer in GaAs-AlxGa1−xAs heterojunction layers. Appl. Phys. Lett. 1981. 38, No 1. P. 36.
https://doi.org/10.1063/1.92117

4. Pond J.M., Kirchoefer S.W., and Gukauskas E.J. Microwave amplification to 2.5 GHz in a quantum state transfer device. Appl. Phys. Lett. 1985. 47, No 11. P. 1175.
https://doi.org/10.1063/1.96317

5. Savaki N., Suzuki M., Takagaki Y., Goto H. and Akasaki I. Photo-luminecence studies of hot electrons and real space transfer effect in a double quantum well superlattice. Superlattices and Microelectronics. 1986. 2, No 4. P. 281.
https://doi.org/10.1016/0749-6036(86)90033-9

6. Bigelow J.M. and Leburton J.P. Tunneling real-space transfer induced by wave function hybridization in modulation doped heterostructures. Appl. Phys. Lett. 1990. 57. P. 795–797.
https://doi.org/10.1063/1.103423

7. Schöl E., Aoki K. Novel mechanism of a real-space transfer oscillator. Appl. Phys. Lett. 1991. 58. P. 1277.
https://doi.org/10.1063/1.104335

8. Döttling R., Schöl E. Oscillatory bistability of real-space transfer in semiconductor heterostructures. Phys. Rev. B. 1992. 45. P. 1935.
https://doi.org/10.1103/PhysRevB.45.1935

9. Jakumeit J., Tutt M. and Pavidis D. Quantum state transfer in double quantum-well devices J. Appl. Phys. 1994. 76, No 11. P. 7428.
https://doi.org/10.1063/1.357969

10. Gribnikov Z.S., Hess K. and Kosinovsky G.A. Nonlocal and nonlinear transport in semiconductors: Real-space transfer effects. J. Appl. Phys. 1995. 77, No 4. P. 1337.
https://doi.org/10.1063/1.358947

11. Rui Q. Yang, Quantum real-space transfer in semiconductor heterostructures. Appl. Phys. Lett. 1998. 73, No 22. P. 3265–3267.
https://doi.org/10.1063/1.122739

12. Mitin V., Kochelap V., Stroscio M.F. Quantum Heterostructures: Microelectronics and Optoelectronics. Cambridge University Press, 1999.

13. Khalil H., Sun Y., Balkan N. et al. Nonlinear dynamics of non-equilibrium holes in p-type modulation-doped GaInNAs/GaAs quantum wells. Nanoscale Res. Lett. 2011. 6. P. 191.
https://doi.org/10.1186/1556-276X-6-191

14. Luryi S., Kastalsky A., Gossard A.C., Hendel R. A field-effect transistor with a negative differential resistance. IEEE Electron.Device Lett. 1984. EDL-5. P. 57–60.

15. Luryi S., Kastalsky A. et al. Charge injection transistor based on real-space hot-electron transfer. IEEE Trans. Elect. Dev. 1984. 31, No 6. P. 832–839.
https://doi.org/10.1109/T-ED.1984.21616

16. Luryi Serge. Light-emitting devices based on the real-space transfer of hot electons Appl. Phys. Lett. 1991. 58, No 16. P. 1727.
https://doi.org/10.1063/1.105122

17. Takeyoshi Sugayaa and Kazuhiro Komori, InGaAs dual channel transistors with negative differential resistance. Appl. Phys. Lett. 2006. 88. P. 142107.
https://doi.org/10.1063/1.2193728

18. Grubin H.L., Mitin V.V., Schöll E., Shaw M.P. The Physics of Instabilities in Solid State Electron Devices. Springer Science & Business Media. 2013.

19. Balagula R.M., Vinnichenko M.Ya., Makhov I.S., Firsov D.A., Vorobjev L.E. Modulation of intersubband light absorption and interband photoluminescence in double GaAs/AlGaAs quantum wells under strong lateral electric fields. Semiconductors. 2016. 50, Issue 11. P. 1425–1430.
https://doi.org/10.1134/S106378261611004X

20. Balagula R.M., Vinnichenko M.Ya., Makhov I.S., Sofronov A.N., Firsov D.A., Vorobjev L.E. Phase modulation of mid-infrared radiation in double-quantum-well structures under a lateral electric field. Semiconductors. 2017. 51, Issue 3. P. 363–366.
https://doi.org/10.1134/S1063782617030034

21. Aleshkin V.Ya. and Dubinov A.A. Inversion of the electron population in subbands of dimensional quantization with longitudinal transport in tunnel-coupled quantum wells. Semiconductors. 2002. 36, Issue 6. P. 685–690.
https://doi.org/10.1134/1.1485671

23. Šermukšnis E., Liberis J., Matulionis A., Avrutin V., Ferreyra R., Özgürand Ü., Morkoç H. Hot-electron real-space transfer and longitudinal transport in dual AlGaN/AlN/{AlGaN/GaN} channels. Semicond. Sci. Technol. 2015. 30. P. 035003.
https://doi.org/10.1088/0268-1242/30/3/035003

24. Belevskii P.A., Vinoslavskii M.N., Poroshin V.N., Baidus N.V., Zvonkov B.N. Far-infrared radiation from n-InGaAs/GaAs quantum-well hetero-structures in high lateral electric fields under injection conditions. Semiconductors. 2014. 48, Issue 5. P. 625–629.
https://doi.org/10.1134/S1063782614050029

25. Belevskii P.A., Vinoslavskii M.N., Poroshin V.N., Baidus N.V., Zvonkov B.N. Interband and intraband radiation from the n-heterostructures with quantum wells under the conditions of injection in high lateral electric fields. Physica E. 2015. 74. P. 328.
https://doi.org/10.1016/j.physe.2015.07.023

26. Levinshtein M.E., Rumyantsev S.L, and Shur M.S. (Editors). Handbook: Series of Semiconductor Parameters, Vol.2: Ternary and Quarternary A3B5 Compaunds, AlGaAs, GaInP, GaInAs, GaInSb, GaAsSb, InAsSb, GaInAsP, GaInAsSb. World Scientific, Singapore–New Jersey–London–Hong Kong, 1999. 27. Blank T.V., Gol'dberg Yu.A. Mechanisms of current flow in metal-semiconductor ohmic contacts. Semiconductors. 2007. 41, Issue 11. P. 1263–1292.
https://doi.org/10.1134/S1063782607110012

28. Montes Bajo M., Dunn G., Stephen A., Khalid A., Cumming D.R.S., Oxley C.H., Glover J., and Kuball M. Impact ionization electroluminescence in planar GaAs-based heterostructure Gunn diodes: Spatial distribution and impact of doping non-uniformities. J. Appl. Phys. 2013. 113. P. 124505.
https://doi.org/10.1063/1.4798270

29. Zappe H.P. et al., Electroluminescence from Gunn domains in GaAs/AlGaAs heterostructure field effect transistors. J. Appl. Phys. 1990. 68. P. 2501–2503.
https://doi.org/10.1063/1.346515

30. Weilu Gao, Xuan Wang, Rui Chen, David B. Eason, Gottfried Strasser, Jonathan P. Bird, and Junichiro Kono. Electroluminescence from GaAs/AlGaAs heterostructures in strong in-plane electric fields: Evidence for k- and real-space charge transfer. ACS Photonics. 2015. 2. P. 1155.
https://doi.org/10.1021/acsphotonics.5b00212

31. Sablikov V.A., Ryabushkin O.A., Polyakov S.V. Effect of lateral transport of photoinduced charge carriers in a heterostructure with a two-dimensional electron gas. Semiconductors. 1997. 31, Issue 4. P. 329–334.
https://doi.org/10.1134/1.1187181

32. Butov L.V., Imamoglu A., Mintsev A.V., Kampman K.L. and Gossard A.C. Photoluminescence kinetics of indirect exitons in GaAs/AlxGa1-xAs coupled quantum wells. PRB. 1999. 59, Issue 3. P. 1625.
https://doi.org/10.1103/PhysRevB.59.1625

33. Nido M., Alexander M.G.W., and Ruhle W.W. Nonresonant electron and hole tunnelling times in GaAs/Al0.35Ga0.65As asymmetric double quantum wells. Appl. Phys. Lett. 1990. 58, Issue 4. P. 355.
https://doi.org/10.1063/1.102783

34. Feldman J., Peter G. et al. Dependence of radiative exciton lifetimes in quantum wells. Phys. Rev. Lett. 1987. 59. P. 2337.
https://doi.org/10.1103/PhysRevLett.59.2337

35. Tsuchiya M., Matsusue T., and Sakaki H. Tunneling escape rate of electrons from quantum well in double-barrier heterostructures. Phys. Rev. Lett. 1987. 59. P. 2356.
https://doi.org/10.1103/PhysRevLett.59.2356

36. Tada T., Yamagichi A. et al. Tunneling process in AlAs/GaAs double quantum wells studied by photo-luminescence. J. Appl. Phys. 1988. 63. P. 5491.
https://doi.org/10.1063/1.340374