Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (3), P. 263-272 (2018).
DOI: https://doi.org/10.15407/spqeo21.03.263


References

1. Ummartyotin S. and Infahsaeng Y. A compre-hensive review on ZnS: From synthesis to an approach on solar cell. Renewable and Sustainable Energy Reviews. 2016. 55. P. 17–24.
https://doi.org/10.1016/j.rser.2015.10.120"

2. Fang X., Zhai T., Gautam U.K., Li L., Wu L., Bando Y. and Golberg D. ZnS nanostructures: From synthesis to applications. Progress in Materials Science. 2011. 56, No 2. P. 175–287.
https://doi.org/10.1016/j.pmatsci.2010.10.001

3. Bovina L.A. et al. Physics of AIIBVI Compounds, Eds. A.N Georgebiany, M.K. Sheynkman. Moscow, Nauka, 1986 (in Russian).

4. Hu L., Yan J., Xiang H., Gong X., Zhang L. and Fang X. An optimized ultraviolet – a light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Adv. Mater. 2012. 24, No 17. P. 2305–2309.
https://doi.org/10.1002/adma.201200512

5. Lee G.J., Wu J.J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications – A review. Powder Technology. 2017. 318. P. 8–22.
https://doi.org/10.1016/j.powtec.2017.05.022

6. Wang X., Huang H., Liang B., Liu Z., Chen D. and Shen G. ZnS nanostructures: Synthesis, properties, and applications. Solid State and Materials Sciences. 2013. 38, No 1. P. 57–90.
https://doi.org/10.1080/10408436.2012.736887

7. Eliseev A.A., Lukashin A.V. Functional Nanomaterials. Moscow, Fizmatlit, 2010 (in Russian).

8. Zharovsky L.F., Zavyalova L.V., Svechnikov S.V. The method for obtaining layers of semiconductor materials. Author's certificate No. 409468. CI BOIj 17/04. Registered 07.09.1973, appl. No. 1689341/23-26 with priority from 16.08.1971.

9. Zharovsky L.F., Zavyalova L.V., Svechnikov G.S. Metal-chalcogenides films prepared from chelate metal-organic compounds. Thin Solid Films. 1985. 128, No 3–4. P. 241–249.
https://doi.org/10.1016/0040-6090(85)90076-8

10. Ainyette A. Synthesis of Semiconductor Nanoparticles. NNIN REU 2006 Research Accomplishments. Materials. P. 48–49.

11. Roffey A.R. Dithiocarbamate complexes as single source precursors to metal sulfide nanoparticles for applications in catalysis. Doctoral thesis. UCL (University College London), 2014.

12. Khomchenko V.S., Roshchina N.N., Zavyalova L.V., Strelchuk V.V., Svechnikov G.S., Tatyanenko N.P., Gromashevskii V.L., Litvin O.S., Avramenko E.A., Snopok B.A. Structure and the emission and piezoelectric properties of MOCVD-grown ZnS, ZnS-ZnO, and ZnO films. Tech. Phys. 2014. 59, No 1. P. 93–101.
https://doi.org/10.1134/S1063784214010071

13. Svechnikov S.V., Vlasenko N.A., Zavyalova L.V., Savin A.K. Electroluminescent emitters based on ZnS films prepared from chelate metal-organic compounds. Technical Physics. 1985. 55, No 22. P. 2406–2408 (in Russian).

14. Zavyalova L.V., Beletski A.I. and Svechnikov G.S. Electroluminescent ZnS:Mn films prepared by an MOCVD method based on dithiocarbamate precursors. Semicond. Sci. Technol. 1999. 14. P. 446–449.
https://doi.org/10.1088/0268-1242/14/5/013

15. Stary J. The Solvent Extraction of Metal Chelates. Oxford, Pergamon Press, 1964.
https://doi.org/10.1016/B978-0-08-010821-6.50007-7

16. Korostelev P.P. Preparation of Solutions for Chemical and Analytical Works. Moscow, Nauka, 1964 (in Russian). 17. Tatyanenko N.P., Gromashevskii V.L., Snopok B.A. Acoustoelectronic structures with an air gap for gas analysis. Sensor Lett. 2010. 8, No 4. P. 554–563.
https://doi.org/10.1166/sl.2010.1311

18. Gilboa H., Das P. Semiconductor surface spectroscopy using acoustic surface wave: CdS. Il Nuovo Cimento B. 1977. 39, No 2. P. 840–845.
https://doi.org/10.1007/BF02725833

19. Gromashevskii V.L., Tat'yanenko N.P., Snopok B.A. Application of the transverse acoustoelectric effect to studying silicon surface charging upon water adsorption. Semiconductors. 2013. 47, No. 4. P. 579–585.
https://doi.org/10.1134/S106378261304009X

20. Gromashevskii V.L., Tatyanenko N.P., Snopok B.A., Application of the transverse acoustoelectric effect to studying silicon surface charging upon water adsorption. Semiconductors. 2013. 47, No 4. P. 579–585.
https://doi.org/10.1134/S106378261304009X

21. Gromashevskii V.L., Tatyanenko N.P., Snopok B.A. Effect of the formation of silicon oxide on the sign, magnitude and formation of surface charge upon water adsorption on a silicon surface. Theor. Exp. Chem. 2015. 51, No 3. P. 170–176.
https://doi.org/10.1007/s11237-015-9412-z

22. Avramenko K.A., Roshchina N.N., Olkhovik G.P., Smertenko P.S. and Zavyalova L.V. Structural and electro-physical properties of ZnO films, obtained by a MOCVD method on glass and silicon substrates. Solid State Phenomena. 2015. 230. P. 205–210.
https://doi.org/10.4028/www.scientific.net/SSP.230.205

23. Svechnikov S.V., Zharovsky L.F., Zavyalova L.V., Poludin V.I., Rahlin M.Ya. Investigation of the growth kinetics and structure of cadmium and zinc sulfide films chemically obtained from metallorganic compounds. Inorganic materials. 1978. 14, No 4. P. 636–640 (in Russian).

24. Astrov Yu.A., Portsel L.M., Lodygin A.N. and Shuman V.B. Gas-phase doping of silicon with sulfur. Semiconductor Science and Technology. 2011. 26. 055021.
https://doi.org/10.1088/0268-1242/26/5/055021

25. Onwudiwe D.C. and Ajibade P.A. Thermal studies of Zn (II), Cd (II) and Hg (II) complexes of some N-alkyl-N-phenyl-dithiocarbamates. Int. J. Mol. Sci. 2012. 13, No 8. P. 9502–9513.
https://doi.org/10.3390/ijms13089502

26. Onwudiwe D.C. and Ajibade P.A. Synthesis, characterization and thermal studies of Zn(II), Cd(II) and Hg(II) complexes of N-methyl-N-phenyldithiocarbamate: The single crystal structure of [(C6H5)(CH3)NCS2]4Hg2. Int. J. Mol. Sci. 2011. 12, No 3. P. 1964–1978.
https://doi.org/10.3390/ijms12031964

27. Sharma A.K. Thermal behaviour of metal-dithiocarbamates. Thermochimica Acta. 1986. 104. P. 339–372.
https://doi.org/10.1016/0040-6031(86)85208-X

28. Silva M.C.D., Conceição M.M., Trindade M.F.S., Souza Pinheiro A.G., C.D., Machado J.C. and Filho P.F.A. Kinetic and thermodynamic parameters of the thermal decomposition of zinc(II) dialkyldithiocarbamate complexes. Journal of Thermal Analysis and Calorimetry. 2004. 75, No 2. P. 583–590.
https://doi.org/10.1023/B:JTAN.0000027149.08673.8e

29. Singhal S., Garg A.N. and Chandra K. Thermal decomposition of transition metal dithiocarbamates. Journal of Thermal Analysis and Calorimetry. 2004. 78, No 3. P. 941–952.
https://doi.org/10.1007/s10973-005-0460-0

30. Meng Wang, Qi Zhang, Wei Hao and Zhong-Xi, Surface stoichiometry of zinc sulfide and its effect on the adsorption behaviors of xanthate. Chem. Cent. J. 2011. 5, No 1. P. 73.
https://doi.org/10.1186/1752-153X-5-73

31. Fei-Peng Yu, Sin-Liang Ou, Pin-Chuan Yao, Bing-Rui Wu, and Dong-Sing Wuu, Structural, surface morphology and optical properties of ZnS films by chemical bath deposition at various Zn/S molar ratios. J. Nanomater. 2014. 2014. 594952.

32. Zhou C., Wu Z., Guo Y., Li Y., Cao H., Zheng X. and Dou X. Ultrasensitive, real-time and discriminative detection of improvised explosives by chemiresistive thin-film sensory array of Mn2+ tailored hierarchical ZnS. Sci. Repts. 2016. 6. P. 25588.
https://doi.org/10.1038/srep25588

33. Bonch-Bruevich B.L., Kalashnikov S.G. Physics of Semiconductors. Moscow, Nauka, 1977 (in Russian).

34. Gorshkov A.P., Tikhov S.V. Semiconductor Surface Physics. Nizhny Novgorod State University Press, Nizhny Novgorod, 2013.

35. Snopok B.A. Nonexponential kinetics of surface chemical reactions. Theor. Exp. Chem. 2014. 50. P. 67–95.
https://doi.org/10.1007/s11237-014-9351-0

36. Snopok B.A., Snopok O.B. Information processing in chemical sensing: unified evolution coding by stretched exponential, Chap. 18 in: Detection of CBRN-nanostructured Materials. Springer, Netherlands, 2018.