Semiconductor
Physics, Quantum Electronics and Optoelectronics, 21 (3), P. 273-276 (2018). References
1. Studenyak I.P., Kúš P. Structural Disorder in Crystalline and Amorphous Superionic Conductors. Uzhhorod: Hoverla, 2016.
2. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure – property relations of high temperature ion conductors. Z. Kristallogr. 2005. 220. P. 281–294.
3. Studenyak I.P., Kranjčec M., Kovacs Gy.Sh., Desnica-Frankovic I.D., Molnar A.A., Panko V.V., Slivka V.Yu. Electrical and optical absoprtion studies of Cu7GeS5I fast-ion conductor. J. Phys. Chem. Solids. 2002. 63. P. 267–271.
4. Saraswati V. Microhardness measurement in nonmetallic materials. Bull. Mater. Sci. 1987. 9. P. 287–294.
5. Trunov M.L., Bilanych V.S., Dub S.N. Investigation of time-dependent mechanical behavior of materials under the nano-hardness testing. Technical Physics. 2007. 52, No 10. P. 1298–1305.
6. Lofaj F., Nemeth D. The effects of tip sharpness and coating thickness on nanoindentation measurements in hard coatings on softer substrates by FEM. Thin Solid Films. 2017. 644. P. 173–181.
7. Golovin Yu.I. Nanoindentation and Its Capabilities. Moscow, Mashinostroenie, 2009 (in Russian).
8. Ashby M.F. The deformation of plastically non-homogeneous materials. Phil. Mag. 1970. 21. P. 399–424.
9. Gao H., Huang Y., Nix W.D., Hutchinson J.W. Mechanism based strain gradient plasticity – I. Theory. J. Mech. Phys. Solids. 1999. 47. P. 1239–1263.
10. Nix W.D., Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids. 1998. 46. P. 411–425.
11. Matthew R., Begley J., Hutchinson W. The mechanics of size-dependent indentation. J. Mech. Phys. Solids. 1998. 35. P. 2049–2068.
12. Zong Z., Lou J., Adewoye O.O., Elmustafa A.A., Hammad F., Soboyejo W.O. Indentation size effects in the nano and microhardness of FCC single crystal metals. Materials and Manufacturing Processes. 2007. 22. P. 228–237.
|