Semiconductor
Physics, Quantum Electronics and Optoelectronics, 21 (3), P. 288-293 (2018). References
1. Ren J., Eason D.B., Churchill L.E., Yu Z., Boney C., Cook J.W. Jr., Schetzina J.F., El-Masry N.A. Integrated heterostructure device composed of II–VI materials with Hg-based contact layers. J. Cryst. Growth. 1994. 138, Issues 1-4. P. 455–463.
2. Gawlik K.U., Kipp L., Skibowski M., Orlowski N. and Manzke R. HgSe: Metal or Semiconductor? Phys. Rev. Lett. 1997. 78. P. 3165–3168.
3. Chantis A.N, Schilfgaarde M.V. and Kutani T. Ab initio prediction of conduction band spin splitting in zinc blende semiconductors. Phys. Rev. Lett. 2006. 96. P. 086405 (2006). Erratum: Phys. Rev. Lett. 2006. 97. P. 039903
4. Delin A., Klüner, T. Excitation spectra and ground-state properties from density-functional theory for the inverted band-structure systems β-HgS, HgSe, and HgTe. Phys. Rev. B. 2002. 66, No 3. P. 035117.
5. Cardona M., Kremer R.K., Lauck R., Siegle G., Mu-oz A., & Romero A.H. Electronic, vibrational, and thermodynamic properties of metacinnabar β-HgS, HgSe, and HgTe. Phys. Rev. B. 2009. 80, No 19. P. 195204.
6. Secuk M.N., Aycibin M., Erdinc B., Gulebaglan S.E., Dogan E.K., Akkus H. Ab-initio calculations of structural, electronic, optical, dynamic and thermodynamic properties of HgTe and HgSe. Amer. J. Condens. Matter Phys. 2014. 4, No 1. P. 13–19.
7. Arora G. and Ahuja B.L. Electronic structure of some mercury chalcogenides using Compton spectroscopy. Radiation Physics and Chemistry. 2008. 77, No 1. P. 9–17.
8. El Haj Hassan F., Al Shafaay B., Meradji H., Ghemid S., Belkhir H., Korek M. Ab-initio study of the fundamental properties of HgSe, HgTe and their HgSexTe1−x alloys. Physica Scripta. 2011. 84, No 6. P. 065601.
9. X. Gonze, Beuken J.-M., Caracas R. et al. First-principles computation of material properties: the ABINIT software project ABINIT. Computational Materials Science. 2002. 25, Issue 3. P. 478–492.
10. Kohn W. and Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965. 140. P. A1133.
11. Hohenberg P. and Kohn W. Inhomogeneous electron gas. Phys. Rev. 1964. 136. P. B864.
12. Goedecker S. Fast radix 2, 3, 4, and 5 kernels for fast Fourier transformations on computers with overlapping multiply-add instructions. Society for Industrial and Applied Mathematics. J. Sci. Comput. 1997. 18, No 6. P. 1605–1611.
13. Perdew J.P., Bueke K., Ernzerhof M. Generalised gradient approximation made simple. Phys. Rev. Lett. 1996. 77. P. 3865.
14. Martins J.L., Troullier N. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B. 1991. 43. P. 8861.
15. Monkhorst H.J., Pack J.D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976. 13, No 12. 5188.
16. Madelung O., Von der Osten W., Rossler U., in: Madelung O., Schulz M. Semiconductors – Basic Data. Springer, 1987; Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, in: New Series, Group III, Vol. 22, Springer Verlag, Berlin.
17. Boutaiba F., Zaoui A. and Ferhat M. Fundamental and transport properties of ZnX, CdX and HgX (X = S, Se, Te) compounds. Superlattices and Microstructures. 2009. 46. P. 823–832.
18. Adachi S. Handbook on Physical Properties of Semiconductor. Berlin: Springer. 2004. Vol. 3.
19. Fox M., Optical Properties of Solids. Second edition. Oxford University Press, Oxford. 2010.
20. Wang X., Dou S. Xue. and Zhang C. Zero-gap materials for future spintronics, electronics and optics. NPG Asia Materials. 2010. 2, No 1. P. 31–38.
21. Philipp H.R. and Ehrenreich H. Optical properties of semiconductors. Phys. Rev. 1993. 129. P. 1550–1560.
|