Semiconductor Physics, Quantum Electronics and Optoelectronics, 21 (3), P. 307-314 (2018).
DOI: https://doi.org/10.15407/spqeo21.03.307


References

1. Pulker H.K., Benes E., Hammer D., Soller E. Progress in monitoring thin films thickness with quartz crystal resonators. Thin solid films. 1976. 32. P. 27–33.
https://doi.org/10.1016/0040-6090(76)90547-2

2. Benes E. Improved quartz crystal microbalance technique. J. Appl. Phys. 1984. 56, No 3. P. 608–626.
https://doi.org/10.1063/1.333990

3. Rodahl M., Hook F., Kasemo B. QCM operation in liquids: An explanation of measured variations in frequency and Q factor with liquid conductivity. Anal. Chem. 1996. 68. P. 2219–2227.
https://doi.org/10.1021/ac951203m

4. Voinova V., Rodahl V., Johnson M., Kasemo B. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum mechanics approach. Physica Scripta. 1999. 59. P. 391–396.
https://doi.org/10.1238/Physica.Regular.059a00391

5. Hauptmann P., Lucklum R., Hartmann J., Auge J. Using the quartz microbalance principle for sensing mass changes and damping properties. Sensors and Actuators A. 1993. 37-38. P. 309–316.
https://doi.org/10.1016/0924-4247(93)80052-I

6. Johannsmann D., Mathauer K., Wegner G., Knoll W. Viscoelastic properties of thin films probed with a quartz-crystal resonator. Phys. Rev. B. 1992. 46, No 12. P. 7808–7815.
https://doi.org/10.1103/PhysRevB.46.7808

7. Johannsmann D. Derivation of the shear compliance of thin films on quartz resonators from comparison of the frequency shifts on different harmonics: A perturbation analysis. J. Appl. Phys. 2001. 89, No 11. P. 6356–6364.
https://doi.org/10.1063/1.1358317

8. Johannsmann D., Reviakine I., Rojas E., Gallego M. Effect of sample heterogeneity on the interpretation of QCM(-D) data: Comparison of combined quartz crystal microbalance/atomic force microscopy measurements with finite element method modeling. Anal. Chem. 2008. 80. P. 8891–8899.
https://doi.org/10.1021/ac8013115

9. Lucklum R., Hauptmann P. Determination of polymer shear modulus with quartz crystal resonators. Faraday Discuss. 1997. 107. P. 123–140.

10. Du B., Johannsmann D. Operation of the quartz crystal microbalance in liquids: Derivation of the elastic compliance of a film from the ratio of bandwidth shift and frequency shift. Langmuir. 2004. 20. P. 2809–2812.
https://doi.org/10.1021/la035965l

11. Saby-Dubreuil A.-C., Guerrier B., Allain C., Johannsmann D. Glass transition induced by solvent desorption for statistical MMA/nBMA copolymers – Influence of copolymer composition. Polymer. 2001. 42. P. 1383–1391.
https://doi.org/10.1016/S0032-3861(00)00539-5

12. Wolff O., Johannsmann D. Shear moduli of polystyrene thin films determined with quartz crystal resonators in the sandwich configuration. J. Appl. Phys. 2000. 87, No 9. P. 4182–4188.
https://doi.org/10.1063/1.373049

13. Bandey H.L., Hillman A.R., Brown M.J., Martin S.J. Viscoelastic characterization of electroactive polymer films at the electrode/solution interface. Faraday Discuss. 1997. 107. P. 105–121.
https://doi.org/10.1039/a704278g

14. Calvo E.J., Etchenique R., Bartlett P.N., Singhal K., Santamaria C. Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films. Faraday Discuss. 1997. 107. P. 141–157.
https://doi.org/10.1039/a703551i

15. Rodahl M., Hook F., Fredriksson C., Keller C.A., Krozer A., Brzezinski P., Voinova M., Kasemo B. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion Faraday Discuss. 1997. 107. P. 229–246.
https://doi.org/10.1039/a703137h

16. DeNolf G.C., Haack L., Holubka J., Straccia A., Blohowiak K., Broadbent C., Shull K.R. High frequency rheometry of viscoelastic coatings with the quartz crystal microbalance. Langmuir. 2011. 27. P. 9873–9879.
https://doi.org/10.1021/la200646h

17. Hillman A. R., Efimov I., Ryder K.S. Time-scale- and temperature-dependent mechanical properties of viscoelastic poly(3,4-ethylenedioxythiophene) films. J. Amer. Chem. Soc. 2005. 127. P. 16611–16620.
https://doi.org/10.1021/ja054259z

18. Nazari A.M., Miri A.K., Shinozaki D.M. Mechanical characterization of nanoclay-filled PDMS thin films. Polymer Testing. 2016. 52. P. 85–88.
https://doi.org/10.1016/j.polymertesting.2016.04.006

19. Bhardwaj V., Chowdhury R., Jayaganthan R. Nanomechanical and microstructural characte-rization of sputter deposited ZnO thin films. Appl. Surf. Sci. 2016. 389. P. 1023–1032.
https://doi.org/10.1016/j.apsusc.2016.08.028

20. Irazu L., Elejabarrieta M.J. The effect of the viscoelastic film and metallic skin on the dynamic properties of thin sandwich structures. Composite Structures. 2017. 176. P. 407–419.
https://doi.org/10.1016/j.compstruct.2017.05.038

22. Wolff O., Seydel E., Johannsmann D. Viscoelastic properties of thin films studied with quartz crystal resonators. Faraday Discuss. 1997. 107. P. 91–104.
https://doi.org/10.1039/a703017g

23. Oda R., Panizza P., Schmutz M., Lequeux F. Direct evidence of the shear-induced structure of wormlike micelles: Gemini surfactant 12-2-12. Langmuir. 1997. 13. P. 6407–6412.
https://doi.org/10.1021/la9621170

24. Sohna J.E.S., Cooper A. Does the Sauerbrey equation hold true for binding of peptides and globular proteins to a QCM? A systematic study of mass dependence of peptide and protein binding with a piezoelectric sensor. Sensing and Bio-Sensing Research. 2016. 11. P. 71–77.
https://doi.org/10.1016/j.sbsr.2016.07.001

25. Duner G., Thormann E., Dedinaite A. Quartz crystal microbalance with dissipation (QCM-D) studies of the viscoelastic response from a continuously growing grafted polyelectrolyte layer. Journal of Colloid and Interface Science. 2013. 408. P. 229–234.
https://doi.org/10.1016/j.jcis.2013.07.008

26. Yuan L.C-Y., Warmack R.J., Barnes C.E., Chengdu D.S. Ionic liquids: A new class of sensing materials for detection of organic vapors based on the use of a quartz crystal microbalance. Anal. Chem. 2002. 74. P. 2172–2176.
https://doi.org/10.1021/ac011007h

27. Speller N.C., Siraj N., Regmi B.P., Marzoughi H., Neal C., Warner I.M. Rational design of QCM-D virtual sensor arrays based on film thickness, viscoelasticity, and harmonics for vapor discrimination. Anal. Chem. 2015. 87. P. 5156−5166.
https://doi.org/10.1021/ac5046824

28. Speller N.C., Siraj N., McCarter K.S., Vaughan S., Warner I.M. QCM virtual sensor array: Vapor identification and molecular weight approximation. Sensors and Actuators B. 2017. 246. P. 952–960.
https://doi.org/10.1016/j.snb.2017.02.042

29. Wyszynski B., Kima D., Nakamoto T. Stabilization of coating for QCM odor sensors with liquid GC materials supported by lipopolymers and lipids. Sensors and Actuators B. 2013. 179. P. 81–86.
https://doi.org/10.1016/j.snb.2012.09.025

30. Sayine S., Ozbek C., Okur S., Yilmaz M. Preparation of the ferrocene-substituted 1,3-distal p-tert-butylcalix[4]arene based QCM sensors array and utilization of its gas-sensing affinities. Journal of Organometallic Chemistry. 2014. 771. P. 9–13.
https://doi.org/10.1016/j.jorganchem.2014.06.004

31. Toniolo R., Pizzariello A., Dossi N., Lorenzon S., Abollino O., Bontempelli G. Room temperature ionic liquids as useful overlayers for estimating food quality from their odor analysis by quartz crystal microbalance measurements. Anal. Chem. 2013. 85. P. 7241−7247.
https://doi.org/10.1021/ac401151m

32. Lipert R.J., Shinar R., Vaidya B., Pris A.D., Porter M.D., Liu G., Grabau T.D., Dilger J.P. Thin films of block copolymer blends for enhanced performance of acoustic wave-based chemical sensors. Anal. Chem. 2002. 74. P. 6383−6391.
https://doi.org/10.1021/ac0260490

33. Potyrailo R.A., Sivavec T.M. Boosting sensitivity of organic vapor detection with silicone block polyimide polymers. Anal. Chem. 2004. 76. P. 7023–7027.
https://doi.org/10.1021/ac049481l

34. Harbeck M., Zafer Sen Z., Gurol I., Gumus G., Musluoglu E., Ahsen V., Ozturk Z.Z. Vic-dioximes: A new class of sensitive materials for chemical gas sensing. Sensors and Actuators B. 2011. 156. P. 673–679.
https://doi.org/10.1016/j.snb.2011.02.017