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Abstract. The paper is devoted to simulation of continual strong coupling condensons and 

bicondensons states in one-dimensional systems by using the Gaussian basis with 

exponentially correlated multipliers. To determine the accuracy of variational calculations, 

it has been shown that using the variational function consisting of a sum of 5 Gaussians 

reproduces the exact value of energy and wave function of the one-dimensional condenson 

with the accuracy of 7 and 5 significant digits, correspondingly. Analytical expressions for 

the effective functional of the one-dimensional bicondenson have been obtained. 

Variational calculations of singlet condenson ground state energy were carried out with 

simultaneous accounting of single-center correlations and correlations caused by a direct 

dependence of the bicondenson wave function on the distance between electrons. The 

graphical dependence of the bicondenson energy on the Coulomb repulsion parameter VC 

has been represented. The region of existence of bicondenson was determined as a function 

of electron-electron repulsion parameter 4.5*
CC ≈≤ VV . The one-center bicondenson model 

has been considered, and distribution of the two-electron probability density (squared wave 

function of bicondenson) in the region C2 V≤  has two maxima, the distance between which 

for VC = 2 is Rm = 1.8567. This distribution of the probability density is associated with the 

low dimensionality of the system under consideration. 
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1. Introduction 

The electron-phonon interaction of paramagnetic centers 

in low-dimensional systems has a number of qualitative 
features in comparison with three-dimensional (3D) 

systems. In a 3D system, condenson [1] can be formed 

only after the potential barrier has been overcome. 
However, even if it happens, 3D condenson is a deep 
self-consistent state of a small radius. The continuum 

theory cannot be used to describe such object. 
Condenson states of large radius can be realized in strong 

magnetic fields, since the crystal becomes similar to the 
one-dimensional (1D) system [2]. The possibility of a 

barrier-free transition of a band electron to an 

autolocalized state in a 1D system was considered by 
Holstein [3]. The Euler equation corresponding to large-

radius polaron in the 1D systems has an exact solution 
[3]. In relation with the fact that 1D polaron can be 

formed in a molecular chain as a result of electron-
phonon interaction with acoustic phonons, it is often 

possible to find the term “1D acoustic polaron”. In this 

paper, we will use the term condenson introduced for 
similar self-trapped states in Ref. [1]. 

The functional of Holstein polaron does not differ 

from the functional of large-radius exciton considered by 

Rashba in the 1D system [4]. The exact solution of the 
Euler equation corresponding to electron excitations of 

exciton type was given in Rashba’s work [4], which was 
published several years earlier than the Holstein work 

[3]. Holstein draws attention to the fact that the method 

proposed in his work for large-radius 1D polaron can be 
extended to 3D systems. In this case, Holstein’s theory 

coincides with the results of Pekar polaron theory [5]. 

Apparently, the work of Deigen and Pekar [1] devoted to 

the theory of condenson and work of Rashba [4] were not 
known to Holstein. However, one can verify that the 
functional of 3D-condenson obtained in Ref. [1] and 

functional of 1D Holstein polaron are identical.  

The aim of this paper is to obtain the energy of 1D 

continual bicondenson with simultaneous consideration 
of various types of correlation effects. Variational 

calculations will be carried out using a Gaussian basis 
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with exponentially correlated factors for the one-center 

condenson configuration. 

 

2. The functional of one-dimensional condenson 

For condenson states, the transition from a 3D to the 1D 

system reduces to a formal procedure of reducing the 

dimensionality of the system without changing the 

general form of the Deigen–Pekar condenson functional 

obtained in [1]: 
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 is the constant characterizing interaction of electron 

with deformation of the crystal lattice caused by acoustic 

phonons in the 3D system, τd  is an element of volume 

in 3D space. 

The functional of 1D condenson has the form: 
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where 
µ

=
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2
h

t , µ  is the effective mass of band electron 

in the 1D system, Eb – parameter characterizing 

interaction of electron with elastic deformation in the 1D 

system. 

The nonlinear Schrödinger equation corresponding 

to the functional of 1D condenson (2) has the form: 
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Here, ESсh is the energy of Schrödinger term (energy of 

photodissociation) of condenson. 

According to [3, 4], equation (3) has an exact 

solution: 

 

( )( )[ ]02sec4)( xxtEhtEx bb −=Ψ ,  (4) 

 

where x0 is a constant of integration, indicative of the fact 

that the centroid of the condenson may be located at an 

arbitrary point in the specimen.  

The ground self-consistent state energy of 1D-

condenson or the thermal dissociation energy 

corresponding to the minimum of the functional (2) has 

the form: 
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In what follows, we shall use dimensionless units 

assuming t = 1 and Eb = 1. The unit of energy according 

to Eq. (5) is tEb
2 , the unit of length according to Eq. (4) 

is bEt . 

 

3. The functional of the one-dimensional bicondenson 

The functional of 1D bipolaron was previously studied 

by Emin, Ye and Beckel [6]. The influence of correlation 

effects on the possibility of formation of a bipolaron 

stable state was studied in Ref. [6]. Two models of 

bipolaron were considered: one-center and two-center 

ones. Correlations stabilizing the single-center model 

were called in Ref. [6] as “in-out correlations”, 

correlations stabilizing the two-center model were called 

as “right-left correlations”. In our work, these correlation 

effects will be called as the single-center and two-center 

ones, in accordance with the bipolaron configuration, 

which becomes stable as a result of taking into account 

correlations of the corresponding type. In 3D systems, 

these correlation effects play an important role, but the 

strongest influence is exerted by correlations associated 

with account of the direct dependence of the polaron 

wave function (WF) on the distance between electrons 

[7, 8]. This kind of correlation effects will be called as 

interelectronic correlations. These correlations in 1D 

systems can stabilize both the single-center and two-

center configurations of bipolaron. In Ref. [6], the 

correlations associated with the direct dependence of 

polaron WF on the electron-electron distance were not 

taken into account. 

In the adiabatic approximation, the effective 

functional of 1D bicondenson has the form [6, 9]: 
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where ),( 211212 xxΨ=Ψ  is WF of the two-electron 

system. It is assumed that WF Ψ12 is normalized and 

symmetrized with respect to the electronic coordinates. 

 

4. Obtaining analytical expressions for the condenson 

and bicondenson functionals  

Using the Gaussian basis for modeling the condenson 

and bicondenson states allows one to calculate exactly all 

integral expressions that enter into the condenson (1) and 

bicondenson (6) functionals. The problem of finding the 

bipolaron ground state energy is reduced to finding the 

minimum of a multiparameter variational function.  



SPQEO, 2018. V. 21, N 3. P. 231-237. 

Kashirina N.I., Korol O.A. Condensons and bicondensons in one-dimensional systems 

233 

4.1. Condenson 

To illustrate the accuracy of Gaussian basis used for 

modeling condenson and bicondenson states, we present 

calculations of the condenson ground state energy by 

using a basis consisting of 5 Gaussians.  

Variational WF of the condenson ground state can 

be written in the form: 

 

∑
=

α−=αΦ
n

i

ii xCCx

1

22
)exp(),,( ,  (7) 

 

where Ci and αi are the variational parameters. 

The normalization integral corresponding to WF (7) 

has the form: 
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where C and α are the matrix columns, elements of which 

are the variational parameters Ci and αi, the index 

i =1, 2, ..., n enumerates the rows of corresponding 

matrices.  

Determination of the ground state energy of 1D-

condenson E1 reduces to minimizing the multiparameter 

function: 
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where the following notation is introduced: 
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The corresponding analytical expressions obtained 

by us using WF (7) are: 
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4.2. Bicondenson 

Trial WF for bicondenson is chosen in the form of a 

Gaussian basis with exponentially correlated factor: 
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where Ci, ai, bi, ci are the variational parameters, P12 is 

the permutation operator of the electron coordinates. 

To simplify the analytical calculations, we carry out 

symmetrization with respect to the electron coordinates 

in WF (15) by using the automatic symmetrization 

procedure. To do this, we always choose an even number 

of terms in the sum over n, setting n =2m and group the 

terms in pairs, assuming, Ci = Ci, ai = ai, ci = ci if mi ≤ ; 

and Ci = Ci – m, ai = ci – m, ci = ai – m if i > m. After this 

procedure, the factor (1 + P12) in the expression (7) can 

be omitted. Further, we assume that WF of bipolaron is 

symmetrized, so that ),(),( 12212112 xxxx Ψ=Ψ . 

The normalization integral is given by: 
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Determination of the bicondenson ground state 

energy is reduced to minimizing the multiparameter 

function: 
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where the notation is introduced: 
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We also introduce simplifying notation in the 

expression for squared WF: 
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where 22
jiij aa +=α , 22

jiij cc +=χ , jiij bb +=β . 

The normalization integral: 
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where: 
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The Coulomb repulsion energy: 
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The full energy of the phonon field and the energy 

of the electron-phonon interaction: 
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The kinetic energy determined using Eq. (18) was 

calculated by differentiation with respect to the 

parameters of the normalization integral (22). 

We introduce the subsidiary function: 
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Twice differentiating (28) on the coordinate of the 

first electron, we multiply the result by fj: 
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where the subsidiary matrix kiT
~

 is defined by the 

expression: 
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The index k in the expressions (29) and (30) enumerates 

the rows of the matrix kiT
~

. 

Taking into account that in Eq. (29) 
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Integration with respect to the coordinates of 

electrons in (18) can be reduced to differentiating with 

respect to the parameters of the normalization integral. 

Calculating the necessary expressions, we get: 
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where the subsidiary matrix K is given by: 
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in its turn: 
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5. Results of minimizing the condenson and 

bicondenson functionals 

5.1. Condenson energy  

To illustrate the accuracy of the energy and WF 

calculations with using the Gaussian basis, we present 

the results of minimizing the condenson functional and 

compare the results obtained with the exact values of WF 

and condenson energy, which are determined by the 

equations (4) and (5), respectively. 

We supplement this WF (7) with the variational 

parameter γ, which we will consider as a scale 

transformation parameter: 
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For γ = 1, WF (38) and (7) coincide, i.e., 

),,()1,,,( αΦ=αΦ′ CxCx . The normalization integral 

corresponding to WF (38) has the form: 
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By taking into account Eq. (39), normalized WF of 

condenson can be written in the form: 
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We can perform an analytic variation of polaron 

functional (2) on the scale transformation parameter γ: 
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where V1ph and T1 are determined by Eqs. (12)-(14). 

With allowance of Eq. (41.a), the ground state 

functional and polaron energy can be written as: 
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As a result of numerical variation of the 

multiparameter function (41.b), we obtain the following 

variational parameters: 
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The condenson energy corresponding to the 

variational parameters (42) is: 

 

120.083333331 −=E . (43) 

 

According to Eq. (5), the exact value of the polaron 

energy in the energy units chosen by us is determined by 

the expression: 
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Since we varied the polaron functional with using a 

scale transformation with a parameter γ determined by 

Eq. (40), the virial theorem is fulfilled identically: 
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Table. Dependence of exact WF for condenson )(xΨ  (4) and 

variational WF )(
~

xΦ  (40) on the coordinate x for n = 5 and 

parameters (42). 

x  )(xΨ  5),(
~

=Φ nx  

0.0 0.500000000 0.499996383 

0.5 0.484771815 0.484780995 

1.0 0.443409442 0.443423506 

1.5 0.386194837 0.386189960 

2.0 0.324027137 0.324016915 

2.5 0.264771064 0.264772559 

3.0 0.212548017 0.212550325 

3.5 0.168680242 0.168670421 

4.0 0.132901114 0.132884136 

4.5 0.104241209 0.104229412 

5.0 0.081535616 0.081534995 
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Fig. 1. Exact condenson WF )(xΨ  determined using Eq. (4) 

and WF )(
~

xΦ  determined using Eq. (40) for n = 1 and n = 5. 

WF )(xΨ  and )(
~

xΦ  determined by the expression (40) for 

n = 5 fully coincide in the graphical representation. 

 

where E1kin and E1ph are the average values of the kinetic 

and potential energy of condenson at the minimum. 

Table compares exact WF (4) and normalized 

variational WF (40) with the parameters determined by 

the expression (42). 

Fig. 1 shows exact WF )(xΨ  (4) and variational 

WF )(
~

xΦ  (40) for n = 1 and n = 5. WF )(xΨ  and )(
~

xΦ  

determined by the expression (40) for n = 5 fully 

coincide in the graphical representation. Thus, to 

simulate WF of bipolaron states with high accuracy, it is 

sufficient to use the five terms in WF (15).  
 

5.2. The energy of singlet bicondenson 

Minimization of the bicondenson functional (6) was 

carried out using WF (15) for n = 5. Analytic expressions 

for the kinetic energy, energy of the Coulomb interaction 

of electrons and total energy of the phonon field and the 

electron-phonon interaction are presented in Section 4.2. 

Fig. 2 shows the dependence of the bicondenson 

ground-state energy on the parameter of Coulomb  
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Fig. 2. Dependence of the bicondenson energy E2 on the 

parameter of electron-electron repulsion VC. 
 

 
Fig. 3. Distribution of the probability density 

Nxx 2
1221 ),( Ψ=ρ  of two-electron WF (15) with the 

parameters (46) for VC = 2. 
 

repulsion. Approximately from the value 8.4*
C =V , 

bipolaron becomes unstable and breaks up into two 

polarons. In the limit VC = 0, the energy of bipolaron 

reproduces the polaron energy (5) increased by the factor 

of 8. The obtained with using WF (15) for n = 5 energy 

was E2 = –0.66666367 in comparison with the exact 

value 8Ep = –0. (6). 

Let us pay attention to the fact that in the case when 

we are dealing with an optical 1D bipolaron, the region 

VC < 2 corresponds to nonphysical parameters, since in 

our notation VC = 2 corresponds to an extremely strong 

coupling, when the ionicity parameter 00 →εε=η ∞ . 

In the same limit, uncorrelated bipolaron in both 3D and 

1D systems breaks up into two noninteracting polarons. 

In the case when condenson or the polaro-condenson are 

considered, the entire range of the parameter C0 V≤ , 

shown in Fig. 2, should be taken into account. 

As an example, we present the results of the 

variational calculations obtained by us for a parameter 

VC = 2 that is the boundary of the existence of an 

uncorrelated condenson. The variational parameters of 

WF (15), which minimize the functional (17), can be 

represented in the form of matrix columns: 
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01.00000000

C , 























=

94.70842538

20.60050033

20.92344886

10.43035266

60.45560611

a  























−

−

−

=

2544.5040111

00.03926506

81.61617189

70.02774288

10.14529333

b , 























=

54.76030492

90.22299169

51.03703524

50.21340034

30.32973458

c , (46) 

 

30.275406292 −=E ,    27540268002 .T = , 

0.275404522 −=potV , 2C =V , (47), 

 

where the potential energy of bicondenson 

phpot VVV += C . 

In relation with the fact that the scale transformation 

was not used, the virial relations 

 

222 potVTE =−=  (49) 

 

are satisfied only approximately. Variation of the 

functional (17) in the analytic form on the scale 

transformation parameter leads to the identical 

fulfillment of the virial theorem, but very insignificantly 

lowers the total energy of the system. 

The variational function (15) corresponds to the 

one-center bipolaron configuration. This is due to the fact 

that there is no parameter corresponding to the distance 

between the centers of the polarization wells of 

condensons in WF (15). A spherically symmetric 

function corresponds to bipolaron of a similar 

configuration in 3D system [10]. In 1D-system, 

coordinates of first and second electrons can be arranged 

along the axes X and Y. The two-electron probability 

density state will be located in the upper half-space along 

the axis Z. Fig. 3 shows the two-electron probability 

density distribution of WF (15) with parameters (46) 

minimizing the bicondenson functional (17). In the upper 

left corner in Fig. 3, the lines of equal probability density 

of condenson are shown. The corresponding 3D image is 

shown in the same figure. Direction, along which the 

polarons are located, corresponds to the diagonal on 

which the maxima of the probability density of the WF 

bicondenson states are located. As shown in Fig. 3, the 

probability density of 1D-condenson has two maxima. 

This result is not obvious in advance, since in a 3D-

system it is distinctive feature of the two-center 

bicondenson configuration.  

The distance Rm between the maxima 2
12Ψ  depends 

on the parameter of Coulomb repulsion VC. For VC = 2 

and parameters (46) Rm = 1.8567. With growth of 

Coulomb repulsion VC, the distance Rm is growing. In the 

range 0 ≤ VC < 2, the maxima merge into one for VC = 0. 
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6. Discussion 

The results obtained in this paper allow us to suggest that 

in 1D systems the principal difference between the two-

center and one-center configurations related to the spatial 

distribution of the probability density of the two-electron 

state is not manifested in the region VC ≥ 2. In both cases, 

the two-electron density matrix Nxx 2
1221 ),( Ψ=ρ  has 2 

maxima, the distance between which Rm increases with 

the increase of the electron-electron repulsion parameter. 

When VC → 0, distance Rm decreases to zero. The latter 

corresponds to the complete absence of interelectron 

correlations. This statement agrees with the conclusions 

obtained earlier in Refs. [11, 12]. Calculations of the 

bicondenson energy associated with taking into account 

the direct dependence of WF on the interelectron distance 

for the two-center model will be carried out in another 

paper. The formal qualitative difference between the two-

center and the one-center model in the Gaussian basis is 

the presence of linear in the electronic coordinates terms 

in the exponents of basis functions [8]. 

Linear chains consisting of weakly bound sites can 

serve as an example of actual objects, where the methods 

considered in the present paper can be applied. These can 

be organic molecules consisting of identical chromoform 

groups, as well as polymers consisting of identical atoms, 

molecules, or molecular groups, the number of which in 

the polymer chain can be measured by millions. The 

continuum theory suggests that the molecular or atomic 

chain is sufficiently long to neglect edge effects. 

Calculations associated with the transfer of charge and 

energy in DNA are actively carried out in the framework 

of discrete model of 1D Holstein–Hubbard polaron [11]. 

In the continuum limit, similar models pass to the case of 

condenson and bicondenson considered by us. From the 

experiments related with studying the conductivity of 

DNA, it is known that DNA can possess the properties of 

dielectrics, semiconductors, and metals [13]. There is 

also a report that in DNA it was possible to get a 

transition to the superconducting state [14] at TC ≈ 3K. 

The theory of superconductivity and the possibility of 

transition to a high-temperature superconducting state on 

the basis of a bipolaron mechanism in 1D systems, 

including DNA, is presented in [15]. 
 

7. Conclusion 

Simulation of condenson and single-center bicondenson 

states in the 1D system using the Gaussian basis with 

exponentially correlated factors has been performed. The 

energy of the ground state of 1D-bicondenson has been 

obtained as a function of system parameters. The region 

of bipolaron stability with respect to the Coulomb 

repulsion parameter VC has been determined: 

4.5* ≈≤ CC VV . The variation calculations were carried 

out in the frameworks of one-center model, and 

distribution of the probability density N2
1212 Ψ=ρ  of 

states in the region VC ≥ 2 has two maxima, which is a 

distinctive feature of the two-center configuration оf 

polaron in 3D systems.  
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