Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 267-276 (2019).
DOI: https://doi.org/10.15407/spqeo22.03.267


References

1. Ploog K., Stetter W., Nowitzki A., Schönherr E. Crystal growth and structure detrmination of silicon telluride Si2Te3. Mater. Res. Bull. 1976. 11, No 8. P. 1147-1154. https://doi.org/10.1016/0025-5408(76)90014-3.
https://doi.org/10.1016/0025-5408(76)90014-3
2. Gregoriades P.E., Bleris G.L., Stoemenos J. Electron diffraction study of the Si2Te3 structural transformation. Acta Crystallogr. B. 1983. 39. P. 421-426. https://doi.org/10.1107/S0108768183002670.
https://doi.org/10.1107/S0108768183002670
3. Parsonage N.G., Staveley L.A.K. Disorder in Crystals. Clarendon Press, Oxford, 1978.
4. Keuleyan S., Wang M., Chung F.R., Commons J., Koski K.J. A silicon-based two-dimensional chalcogenide: Growth of Si2Te3 nanoribbons and nanoplates. Nano Lett. 2015. 15. P. 2285-2290. https://doi.org/10.1021/nl504330g.
https://doi.org/10.1021/nl504330g
5. Juneja R., Pandey T., Singh A.K. High thermoelectric performance in n-doped silicon-based chalcogenide Si2Te3. Chem. Mater. 2017. 29. P. 3723-3730. https://doi.org/10.1021/acs.chemmater.7b00728.
https://doi.org/10.1021/acs.chemmater.7b00728
6. Wu K., Sun W., Jiang Y., Chen J., Li L., Cao C., Shi S., Shen X., Cui J. Structure and photoluminescence study of silicon based two-dimensional Si2Te3 nanostructures. J. Appl. Phys. 2017. 122. P. 075701-1-075701-8. https://doi.org/10.1063/1.4998811.
https://doi.org/10.1063/1.4998811
7. Wang M., Lahti G., Williams D., Koski K.J. Chemically tunable full spectrum optical properties of 2D silicon telluride nanoplates. ACS Nano. 2018. 12. P. 6163-6169. https://doi.org/10.1021/acsnano.8b02789.
https://doi.org/10.1021/acsnano.8b02789
8. Wu K., Cui J. Morphology control of Si2Te3 nanostructures synthesized by CVD. J. Mater. Sci. Mater. Electron. 2018. 29. P. 15643-15648. https://doi.org/10.1007/s10854-018-9158-1.
https://doi.org/10.1007/s10854-018-9158-1
9. Wu K., Chen J., Shen X., Cui J. Resistive switching in Si2Te3 nanowires. AIP Adv. 2018. 8. P. 125008-1-125008-7. https://doi.org/10.1063/1.5060675.
https://doi.org/10.1063/1.5060675
10. Chen J., Wu K., Shen X., Hoang T.B., Cui J. Probing the dynamics of photoexcited carriers in Si2Te3 nanowires. J. Appl. Phys. 2019. 125. P. 024306-1-024306-1. https://doi.org/10.1063/1.5053932.
https://doi.org/10.1063/1.5053932
11. Roberts G.G., Lind E.L. Space charge conduction in single crystal Si2Te3. Phys. Lett. A. 1970. 33. P. 365-366. https://doi.org/10.1016/0375-9601(70)90833-9.
https://doi.org/10.1016/0375-9601(70)90833-9
12. Ziegler K., Junker H.-D., Birkholz U. Electrical conductivity and Seebeck coefficient of Si2Te3 single crystals. phys. status solidi (a). 1976. 37. P. K97-K99. https://doi.org/10.1002/pssa.2210370166.
https://doi.org/10.1002/pssa.2210370166
13. Bauer H.P., Birkholz U. Electrical conductivity of passivated Si2Te3 single crystals. phys. status solidi (a). 1978. 49. P. 127-131. https://doi.org/10.1002/pssa.2210490114.
https://doi.org/10.1002/pssa.2210490114
14. Rick M., Rosenzweig J., Birkholz U. Anisotropy of electrical conductivity in Si2Te3. phys. status solidi (a). 1984. 83. P. K183-K186. https://doi.org/10.1002/pssa.2210830260.
https://doi.org/10.1002/pssa.2210830260
15. Vennik J., Callaerts R. Sur les proprietes optiques du tellurure de silicium Si2Te3. C.R. Acad. Sci. Paris. 1965. 260. P. 496-499.
16. Bruckel B., Birkholz U., Ziegler K. Fundamental absorption and Franz-Keldysh effect in silicon telluride. phys. status solidi (a). 1976. 78. P. K23-K25. https://doi.org/10.1002/pssb.2220780147.
https://doi.org/10.1002/pssb.2220780147
17. Ziegler K., Berkholz P. Photoconductivity of Si2Te3 single crystals. phys. status solidi (a). 1976. 37. P. K147-K149. https://doi.org/10.1002/pssa.2210370254.
https://doi.org/10.1002/pssa.2210370254
18. Ziegler K., Berkholz P. Photoelectric properties of Si2Te3 single crystals. phys. status solidi (a). 1977. 39. P. 467-475. https://doi.org/10.1002/pssa.2210390213.
https://doi.org/10.1002/pssa.2210390213
19. Petersen K.E., Birkholz U., Adler D. Properties of crystalline and amorphous silicon telluride. Phys. Rev. B. 1973. 8. P. 1453-1461. https://doi.org/10.1103/PhysRevB.8.1453.
https://doi.org/10.1103/PhysRevB.8.1453
20. Zwick U., Rieder K.H. Infrared and Raman study of Si2Te3. Z. Physik B. 1976. 25. P. 319-322. https://doi.org/10.1007/BF01315246.
https://doi.org/10.1007/BF01315246
21. Vakulchak V.V. Electronic structure of silicon and germanium dichalcogenides and M2Si(Ge)S3 (M = = Li, Na, Ag) superionics: The dissertation for the degree of a doctor of philosophy, Uzhhorod, 2015 (in Ukrainian).
22. Shen X., Puzyrev Y.S., Combs C., Pantelides S.T. Variability of structural and electronic properties of bulk and monolayer Si2Te3. Appl. Phys. Lett. 2016. 109. P. 113104-1-113104-5. https://doi.org/10.1063/1.4962826.
https://doi.org/10.1063/1.4962826
23. Anisimov V.I., Aryasetiawan F., Lichtenstein A.I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys.: Condens. Matter. 1997. 9. P. 767-808. https://doi.org/10.1088/0953-8984/9/4/002.
https://doi.org/10.1088/0953-8984/9/4/002
24. SIESTA is both a method and its computer program implementation, to perform efficient electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids / http://icmab.cat/leem/siesta/.
25. Bletskan D.I., Glukhov K.E., Frolova V.V. Electronic structure of 2H-SnSe2: ab initio modeling and comparison with experiment. Semiconductor Physics Quantum Electronics & Optoelectronics. 2016. 19. P. 98-108.
https://doi.org/10.15407/spqeo19.01.098
26. Ukhanov Yu.I. Optical Properties of Semiconductors. Moscow: Nauka, 1977 (in Russian).
27. Tsebulya G.G., Lisitsa M.P., Malynko V.N. New interpretation of red absorption of Ge and CdTe. Ukr. Fiz. Zhurnal. 1967. 12. P. 1144-1150 (in Russian).
28. Froza A., Selloni A. Tetragedrally-bonded Amorphous Semiconductors. N.Y.: London, 1985.
29. Urbach F. The long-wavelenth edge of photo-graphic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953. 92. P. 1324-1331. https://doi.org/10.1103/PhysRev.92.1324.
https://doi.org/10.1103/PhysRev.92.1324
30. Toyozawa Y. Theory of line-shapes of the exciton absorption bands. Progress of Theoretical Physics. 1958. 20. P. 53-81. https://doi.org/10.1143/PTP.20.53.
https://doi.org/10.1143/PTP.20.53
31. Studenyak I.P., Kranjčec M., Kurik M.V. Optics of Disordered System. Uzhhorod: Grazhda, 2008 (in Ukrainian).
32. Sumi H., Toyozawa Y. Urbach-Martiensen rule and exciton trapped momentaliry by lattice vibration. J. Phys. Soc. Jpn. 1971. 31, No 2. P. 342-358. https://doi.org/10.1143/JPSJ.31.342.
https://doi.org/10.1143/JPSJ.31.342
33. Beaudoin M., DeVries A.J.G., Johnson S.R., Laman H., Tiedje T. Optical absorption edge of semi-insulating GaAs and InP at high temperatures. Appl. Phys. Lett. 1997. 70. P. 3540-3542. https://doi.org/10.1063/1.119226.
https://doi.org/10.1063/1.119226
34. Cody G.D., Tiedje T., Abeles B., Brooks B., Goldstein Y. Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 1981. 47. P. 1480-1483. https://doi.org/10.1103/PhysRevLett.47.1480.
https://doi.org/10.1103/PhysRevLett.47.1480
35. Johnson S.R., Tiedje T. Temperature dependence of the Urbach edge in GaAs. J. Appl. Phys. 1995. 78. P. 5609-5613. https://doi.org/10.1063/1.359683.
https://doi.org/10.1063/1.359683
36. Sa-Yakanit V., Glyde H.R. Urbach tails and disorder. Comments Matter Phys. 1987. 13, No 1. P. 35-48.
37. Pistoulet B., Robert J.L., Dusseau J.M., Ensuque L. Conduction mechanisms in amorphous and disordered semiconductors explained by a model of medium-range disorder of composition. J. Non-Crystal. Solids. 1978. 29. P. 29-40. https://doi.org/10.1016/0022-3093(78)90137-0.
https://doi.org/10.1016/0022-3093(78)90137-0
38. Tauc J. Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 1970. 5. P. 721-729. https://doi.org/10.1016/0025-5408(70)90112-1.
https://doi.org/10.1016/0025-5408(70)90112-1
39. Odin I.N., Ivanov V.A. State РtotТх-diagram of SiTe system. Zhurnal Neorg. Khimii. 1991. 36. P. 1314-1319 (in Russian).
40. Vlasenko A.I., Vlasenko Z.K., Lyubchenko А.V. Photoconductivity spectral characteristics of semiconductors with exponential fundamental absorption edge. Semiconductors. 1999. 33, Issue 11. P. 1171-1174.
https://doi.org/10.1134/1.1187842