Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 267-276 (2019).
DOI:
https://doi.org/10.15407/spqeo22.03.267
References
1. Ploog K., Stetter W., Nowitzki A., Schönherr E. Crystal growth and structure detrmination of silicon telluride Si2Te3. Mater. Res. Bull. 1976. 11, No 8. P. 1147-1154. https://doi.org/10.1016/0025-5408(76)90014-3. https://doi.org/10.1016/0025-5408(76)90014-3 | | 2. Gregoriades P.E., Bleris G.L., Stoemenos J. Electron diffraction study of the Si2Te3 structural transformation. Acta Crystallogr. B. 1983. 39. P. 421-426. https://doi.org/10.1107/S0108768183002670. https://doi.org/10.1107/S0108768183002670 | | 3. Parsonage N.G., Staveley L.A.K. Disorder in Crystals. Clarendon Press, Oxford, 1978. | | 4. Keuleyan S., Wang M., Chung F.R., Commons J., Koski K.J. A silicon-based two-dimensional chalcogenide: Growth of Si2Te3 nanoribbons and nanoplates. Nano Lett. 2015. 15. P. 2285-2290. https://doi.org/10.1021/nl504330g. https://doi.org/10.1021/nl504330g | | 5. Juneja R., Pandey T., Singh A.K. High thermoelectric performance in n-doped silicon-based chalcogenide Si2Te3. Chem. Mater. 2017. 29. P. 3723-3730. https://doi.org/10.1021/acs.chemmater.7b00728. https://doi.org/10.1021/acs.chemmater.7b00728 | | 6. Wu K., Sun W., Jiang Y., Chen J., Li L., Cao C., Shi S., Shen X., Cui J. Structure and photoluminescence study of silicon based two-dimensional Si2Te3 nanostructures. J. Appl. Phys. 2017. 122. P. 075701-1-075701-8. https://doi.org/10.1063/1.4998811. https://doi.org/10.1063/1.4998811 | | 7. Wang M., Lahti G., Williams D., Koski K.J. Chemically tunable full spectrum optical properties of 2D silicon telluride nanoplates. ACS Nano. 2018. 12. P. 6163-6169. https://doi.org/10.1021/acsnano.8b02789. https://doi.org/10.1021/acsnano.8b02789 | | 8. Wu K., Cui J. Morphology control of Si2Te3 nanostructures synthesized by CVD. J. Mater. Sci. Mater. Electron. 2018. 29. P. 15643-15648. https://doi.org/10.1007/s10854-018-9158-1. https://doi.org/10.1007/s10854-018-9158-1 | | 9. Wu K., Chen J., Shen X., Cui J. Resistive switching in Si2Te3 nanowires. AIP Adv. 2018. 8. P. 125008-1-125008-7. https://doi.org/10.1063/1.5060675. https://doi.org/10.1063/1.5060675 | | 10. Chen J., Wu K., Shen X., Hoang T.B., Cui J. Probing the dynamics of photoexcited carriers in Si2Te3 nanowires. J. Appl. Phys. 2019. 125. P. 024306-1-024306-1. https://doi.org/10.1063/1.5053932. https://doi.org/10.1063/1.5053932 | | 11. Roberts G.G., Lind E.L. Space charge conduction in single crystal Si2Te3. Phys. Lett. A. 1970. 33. P. 365-366. https://doi.org/10.1016/0375-9601(70)90833-9. https://doi.org/10.1016/0375-9601(70)90833-9 | | 12. Ziegler K., Junker H.-D., Birkholz U. Electrical conductivity and Seebeck coefficient of Si2Te3 single crystals. phys. status solidi (a). 1976. 37. P. K97-K99. https://doi.org/10.1002/pssa.2210370166. https://doi.org/10.1002/pssa.2210370166 | | 13. Bauer H.P., Birkholz U. Electrical conductivity of passivated Si2Te3 single crystals. phys. status solidi (a). 1978. 49. P. 127-131. https://doi.org/10.1002/pssa.2210490114. https://doi.org/10.1002/pssa.2210490114 | | 14. Rick M., Rosenzweig J., Birkholz U. Anisotropy of electrical conductivity in Si2Te3. phys. status solidi (a). 1984. 83. P. K183-K186. https://doi.org/10.1002/pssa.2210830260. https://doi.org/10.1002/pssa.2210830260 | | 15. Vennik J., Callaerts R. Sur les proprietes optiques du tellurure de silicium Si2Te3. C.R. Acad. Sci. Paris. 1965. 260. P. 496-499. | | 16. Bruckel B., Birkholz U., Ziegler K. Fundamental absorption and Franz-Keldysh effect in silicon telluride. phys. status solidi (a). 1976. 78. P. K23-K25. https://doi.org/10.1002/pssb.2220780147. https://doi.org/10.1002/pssb.2220780147 | | 17. Ziegler K., Berkholz P. Photoconductivity of Si2Te3 single crystals. phys. status solidi (a). 1976. 37. P. K147-K149. https://doi.org/10.1002/pssa.2210370254. https://doi.org/10.1002/pssa.2210370254 | | 18. Ziegler K., Berkholz P. Photoelectric properties of Si2Te3 single crystals. phys. status solidi (a). 1977. 39. P. 467-475. https://doi.org/10.1002/pssa.2210390213. https://doi.org/10.1002/pssa.2210390213 | | 19. Petersen K.E., Birkholz U., Adler D. Properties of crystalline and amorphous silicon telluride. Phys. Rev. B. 1973. 8. P. 1453-1461. https://doi.org/10.1103/PhysRevB.8.1453. https://doi.org/10.1103/PhysRevB.8.1453 | | 20. Zwick U., Rieder K.H. Infrared and Raman study of Si2Te3. Z. Physik B. 1976. 25. P. 319-322. https://doi.org/10.1007/BF01315246. https://doi.org/10.1007/BF01315246 | | 21. Vakulchak V.V. Electronic structure of silicon and germanium dichalcogenides and M2Si(Ge)S3 (M = = Li, Na, Ag) superionics: The dissertation for the degree of a doctor of philosophy, Uzhhorod, 2015 (in Ukrainian). | | 22. Shen X., Puzyrev Y.S., Combs C., Pantelides S.T. Variability of structural and electronic properties of bulk and monolayer Si2Te3. Appl. Phys. Lett. 2016. 109. P. 113104-1-113104-5. https://doi.org/10.1063/1.4962826. https://doi.org/10.1063/1.4962826 | | 23. Anisimov V.I., Aryasetiawan F., Lichtenstein A.I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys.: Condens. Matter. 1997. 9. P. 767-808. https://doi.org/10.1088/0953-8984/9/4/002. https://doi.org/10.1088/0953-8984/9/4/002 | | 24. SIESTA is both a method and its computer program implementation, to perform efficient electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids / http://icmab.cat/leem/siesta/. | | 25. Bletskan D.I., Glukhov K.E., Frolova V.V. Electronic structure of 2H-SnSe2: ab initio modeling and comparison with experiment. Semiconductor Physics Quantum Electronics & Optoelectronics. 2016. 19. P. 98-108. https://doi.org/10.15407/spqeo19.01.098 | | 26. Ukhanov Yu.I. Optical Properties of Semiconductors. Moscow: Nauka, 1977 (in Russian). | | 27. Tsebulya G.G., Lisitsa M.P., Malynko V.N. New interpretation of red absorption of Ge and CdTe. Ukr. Fiz. Zhurnal. 1967. 12. P. 1144-1150 (in Russian). | | 28. Froza A., Selloni A. Tetragedrally-bonded Amorphous Semiconductors. N.Y.: London, 1985. | | 29. Urbach F. The long-wavelenth edge of photo-graphic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953. 92. P. 1324-1331. https://doi.org/10.1103/PhysRev.92.1324. https://doi.org/10.1103/PhysRev.92.1324 | | 30. Toyozawa Y. Theory of line-shapes of the exciton absorption bands. Progress of Theoretical Physics. 1958. 20. P. 53-81. https://doi.org/10.1143/PTP.20.53. https://doi.org/10.1143/PTP.20.53 | | 31. Studenyak I.P., Kranjčec M., Kurik M.V. Optics of Disordered System. Uzhhorod: Grazhda, 2008 (in Ukrainian). | | 32. Sumi H., Toyozawa Y. Urbach-Martiensen rule and exciton trapped momentaliry by lattice vibration. J. Phys. Soc. Jpn. 1971. 31, No 2. P. 342-358. https://doi.org/10.1143/JPSJ.31.342. https://doi.org/10.1143/JPSJ.31.342 | | 33. Beaudoin M., DeVries A.J.G., Johnson S.R., Laman H., Tiedje T. Optical absorption edge of semi-insulating GaAs and InP at high temperatures. Appl. Phys. Lett. 1997. 70. P. 3540-3542. https://doi.org/10.1063/1.119226. https://doi.org/10.1063/1.119226 | | 34. Cody G.D., Tiedje T., Abeles B., Brooks B., Goldstein Y. Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 1981. 47. P. 1480-1483. https://doi.org/10.1103/PhysRevLett.47.1480. https://doi.org/10.1103/PhysRevLett.47.1480 | | 35. Johnson S.R., Tiedje T. Temperature dependence of the Urbach edge in GaAs. J. Appl. Phys. 1995. 78. P. 5609-5613. https://doi.org/10.1063/1.359683. https://doi.org/10.1063/1.359683 | | 36. Sa-Yakanit V., Glyde H.R. Urbach tails and disorder. Comments Matter Phys. 1987. 13, No 1. P. 35-48. | | 37. Pistoulet B., Robert J.L., Dusseau J.M., Ensuque L. Conduction mechanisms in amorphous and disordered semiconductors explained by a model of medium-range disorder of composition. J. Non-Crystal. Solids. 1978. 29. P. 29-40. https://doi.org/10.1016/0022-3093(78)90137-0. https://doi.org/10.1016/0022-3093(78)90137-0 | | 38. Tauc J. Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 1970. 5. P. 721-729. https://doi.org/10.1016/0025-5408(70)90112-1. https://doi.org/10.1016/0025-5408(70)90112-1 | | 39. Odin I.N., Ivanov V.A. State РtotТх-diagram of SiTe system. Zhurnal Neorg. Khimii. 1991. 36. P. 1314-1319 (in Russian). | | 40. Vlasenko A.I., Vlasenko Z.K., Lyubchenko А.V. Photoconductivity spectral characteristics of semiconductors with exponential fundamental absorption edge. Semiconductors. 1999. 33, Issue 11. P. 1171-1174. https://doi.org/10.1134/1.1187842 | |
|
|