Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 277-284 (2019).
DOI: https://doi.org/10.15407/spqeo22.03.277


References

1. Battaglia C., Cuevas A., and De Wolf S. High-efficiency crystalline silicon solar cells: Status and perspectives. Energy Environ. Sci. 2016. 9. P. 1552-1576. https://doi.org/10.1039/C5EE03380B.
https://doi.org/10.1039/C5EE03380B
2. Smith D.D., Reich G., Baldrias M. et al. Silicon solar cells with total area efficiency above 25%. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). P. 3351-3355.
https://doi.org/10.1109/PVSC.2016.7750287
3. https://us.sunpower.com/sites/default/files/media-library/data-sheets/ds-x21-series-335-345-residential-solar-panels.pdf.
4. Sachenko A.V., Kostylyov V.P., Vlasyuk V.M. et al. The influence of the exciton nonradiative recombination in silicon on the photoconversion efficiency. Proc. 32 European Photovoltaic Solar Energy Conf. and Exhib. Germany, Munich, June 20-24, 2016. P. 141-147.
5. Sachenko A.V., Gorban A.P., Kostylyov V.P. et al. The radiative recombination coefficient and the internal quantum yield of electroluminescence in silicon. Semiconductors. 2006. 40, No 8. P. 884-889. https://doi.org/10.1134/S1063782606080045.
https://doi.org/10.1134/S1063782606080045
6. Richter A., Glunz S., Werner F. et al. Improved quantitative description of Auger recombination in crystalline silicon. Phys. Rev. B. 2012. 86. P. 165202(1-14). https://doi.org/10.1103/PhysRevB.86.165202.
https://doi.org/10.1103/PhysRevB.86.165202
7. Trupke T., Green M.A., Wurfel P. et al. Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon. J. Appl. Phys. 2003. 94, No 8. P. 4930-4937. https://doi.org/10.1063/1.1610231.
https://doi.org/10.1063/1.1610231
8. Schenk A. Finite-temperature full random-phase approximation mode of band gap narrowing for silicon device simulation. J. Appl. Phys. 1998. 84, No 7. P. 3684-3695. https://doi.org/10.1063/1.368545.
https://doi.org/10.1063/1.368545
9. Kostylyov V.P., Sachenko A.V., Sokolovskyi I.O. et al. Influence of surface centers on the effective surface recombination rate and the parameters of silicon solar cells. Ukr. J. Phys. 2013. 58, No 4. P. 362-369.
10. Sachenko A.V., Kostylyov V.P., Sokolovskyi I.O. et al. Specific features of current flow in α-Si : H/Si heterojunction solar cells. Techn. Phys. Lett. 2017. 43, No 2. P. 152-155. https://doi.org/10.1134/S1063785017020109.
https://doi.org/10.1134/S1063785017020109
11. Sachenko A.V., Kostylyov V.P., Kulish N.R. et al. Modeling the efficiency of multijunction solar cells. Semiconductors. 2014. 48, No 5. P. 675-682. https://doi.org/10.1134/S1063782614050182.
https://doi.org/10.1134/S1063782614050182
12. Verlinden P.J., Chapter IC-5 - High-Efficiency Back-Contact Silicon Solar Cells for One-Sun and Concentrator Applications, in: Solar Cells (Second Edition), Materials, Manufacture and Operation. Elsevier, 2013. P. 327-351. https://doi.org/10.1016/B978-0-12-386964-7.00011-1.
https://doi.org/10.1016/B978-0-12-386964-7.00011-1
13. Gorban A.P., Sachenko A.V., Kostylyov V.P., Prima N.A. Effect of excitons on photoconversion efficiency in the p+-n-n+- and n+-p-p+-structures based on single-crystalline silicon. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2000. 3, No 3. P. 322-329
Sachenko A.V., Prima N.A., Gorban A.P., Serba A.A. Effect of excitons on the upper limit of conversion efficiency in silicon solar cells. Proc. 17-th European Photovoltaic Solar Energy Conference. Munich, Germany, 2001. P. 230-233.
14. Sachenko A.V., Kostylyov V.P., Bobyl A.V. et al. The effect of base thickness on photoconversion efficiency in textured silicon-based solar cells. Techn. Phys. Lett. 2018. 44, No 10. P. 873-876. https://doi.org/10.1134/S1063785018100139.
https://doi.org/10.1134/S1063785018100139
15. http://eshop.terms.eu/_data/s_3386/files/1379942540-sunpower_c60_bin_ghi.pdf.
16. https://us.sunpower.com/sites/default/files/media-library/spec-sheets/sp-sunpower-maxeon-solar-cells-gen3.pdf.
17. Sachenko A.V., Gorban A.P., Kostylyov V.P. et al. The specific features of photoconversion in Si solar cells for the standard and rear contact positions under concentrated illumination. Ukr. J. Phys. 2007. 52, No 7. P. 661-670
Sachenko A.V., Gorban A.P., Kostylyov V.P. et al. Comparative analysis of photoconversion efficiency in the Si solar cells under concentrated illumination for the standard and rear geometries of arrangement of contacts. Semiconductors. 2007. 41, No 10. P. 1214-1223. https://doi.org/10.1134/S106378260710017X.
https://doi.org/10.1134/S106378260710017X
18. Swanson R.M. Point-contact solar cells: Modeling and experiment. Solar Cells. 1986. 17, No 1. P. 85-118. https://doi.org/10.1016/0379-6787(86)90061-X.
https://doi.org/10.1016/0379-6787(86)90061-X