Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 285-292 (2019).
DOI: https://doi.org/10.15407/spqeo22.03.285


References

1. Strobl G. The Physics of Polymers. Concepts for Understanding Their Structures and Behavior. Springer, 2007.
2. Mamunya Ye., Iurzhenko M., Lebedev E. et al. Electroactive Polymeric Materials. Kyiv, Alfa reklama, 2013 (in Russian).
3. Thomas S., Shanks R.A., Joy J. Micro- and Nanostructured Polymer Systems: From Synthesis to Applications. Apple Academic Press, 2016.
https://doi.org/10.1201/b19859
4. Pyrzynski K., Nyszko G., Zaikov G.E. Chemical and Structure Modification of Polymers. Apple Academic Press, 2016.
https://doi.org/10.1201/b19300
5. Amudha S., Suthanthiraraj S.A. Silver ion conducting characteristics of a polyethylene oxide-based composite polymer electrolyte and application in solid state batteries. Adv. Mater. Lett. 2015. 6, No 10. P. 874-882. https://doi.org/10.5185/amlett.2015.5831.
https://doi.org/10.5185/amlett.2015.5831
6. Dabbak S.Z.A., Illias H.A., Ang B.Ch. et al. Electrical properties of polyethylene/polypropylene compounds for high-voltage insulation. Energies. 2018. 11, Issue 6. P. 1448. https://doi.org/10.3390/en11061448.
https://doi.org/10.3390/en11061448
7. Kiraly A., Ronkay F. Temperature dependence of electrical properties in conductive polymer composites. Polymer Testing. 2015. 43. P. 154-162. https://doi.org/10.1016/j.polymertesting.2015.03.011.
https://doi.org/10.1016/j.polymertesting.2015.03.011
8. Agrawal R.C., Sahu D.K., Mahipal Y.K., Ashraf R. Investigations on ion transport properties of hot-press cast magnesium ion conducting Nano-Composite Polymer Electrolyte (NCPE) films: Effect of filler particle dispersal on room temperature conductivity. Mater. Chem. and Phys. 2013. 139. P. 410-415. https://doi.org/10.1016/j.matchemphys.2012.12.056.
https://doi.org/10.1016/j.matchemphys.2012.12.056
9. Rahaman M., Chaki T.K. and Khastgir D. Temperature dependent electrical properties of conductive composites (Behavior at cryogenic temperature and high temperatures). Adv. Mater. Res. 2010. 123-125. P. 447-450. https://doi.org/10.4028/www.scientific.net/AMR.123-125.447.
https://doi.org/10.4028/www.scientific.net/AMR.123-125.447
10. Carotenuto G., Nicola S.D., Ausanio G., Massarotti D., Nicolais L., Pepe G.P. Synthesis and characterization of electrically conductive polyethylene-supported graphene films. Nanoscale Res. Lett. 2014. 9. P. 475. https://doi.org/10.1186/1556-276X-9-475.
https://doi.org/10.1186/1556-276X-9-475
11. Hashim A., Hadi A. Syntesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials - magnesium oxide nanoparticles. Ukr. J. Phys. 2017. 62, No.12. P. 1050-1056. https://doi.org/10.15407/ujpe62.12.1050.
https://doi.org/10.15407/ujpe62.12.1050
12. Youyuan Wang, Can Wang, Zhanxi Zhang, Kun Xiao, Effect of nanoparticles on the morphology, thermal, and electrical properties of low-density polyethylene after thermal aging. Nanomaterials. 2017. 7. P. 320. https://doi.org/10.3390/nano7100320.
https://doi.org/10.3390/nano7100320
13. Reich S., Burgard M., Langner M. et al. Polymer nanofibre composite nonwovens with metal-like electrical conductivity. Flexible Electronics. 2018.5. P. 1-5. https://doi.org/10.1038/s41528-017-0018-5.
https://doi.org/10.1038/s41528-017-0018-5
14. He L., Tjong S.-Ch. Electrical behavior and positive temperature coefficient effect of graphene/ polyvinylidene fluoride composites containing silver. Nanoscale Res. Lett. 2014. 9. P. 375. https://doi.org/10.1186/1556-276X-9-375.
https://doi.org/10.1186/1556-276X-9-375
15. Park W., Hu J., Jauregui L.A., Ruan X., and Chen Y.P. Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites. Appl. Phys. Lett. 2014. 104. P. 113101. https://doi.org/10.1063/1.4869026.
https://doi.org/10.1063/1.4869026
16. Jovic N., Dudic D., Montone A., Antisari M.V., Mitric M. and Djokovic V. Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scripta Materialia. 2008. 58, No 10. P. 846-849. https://doi.org/10.1016/j.scriptamat.2007.12.041.
https://doi.org/10.1016/j.scriptamat.2007.12.041
17. Ying M.T., Wang H.W., Li R., Liu P., Liu C., and Zhang Y. Temperature-dependent electrical properties of graphene nanoplatelets film dropped on flexible substrates. J. Mater. Res. 2014. 29, No 11. P. 1288-1294. https://doi.org/10.1557/jmr.2014.109.
https://doi.org/10.1557/jmr.2014.109
18. Konopelnyk О.І., Aksimentyeva О.І., Horbenko Yu.Yu. Temperature dependence of conductivity in conjugated polymers doped by carbon nanotubes. Journal of Nano- and Electronic Physics. 2017. 9, No 5. P. 05011. https://doi.org/10.21272/jnep.9(5).05011.
https://doi.org/10.21272/jnep.9(5).05011
19. Barrau S., Demont Ph., Peigney A., Laurent Ch., Lacabanne C. DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules. 2003. 36. P. 5187-5194. https://doi.org/10.1021/ma021263b.
https://doi.org/10.1021/ma021263b
20. Li Q., Xue Q.Z., Gao X.L., Zheng Q.B. Tem-perature dependence of the electrical properties of the carbon nanotube/polymer composites. eXPRESS Polymer Lett. 2009. 3, No 12. P. 769-777. https://doi.org/10.3144/expresspolymlett.2009.95.
https://doi.org/10.3144/expresspolymlett.2009.95
21. Wang Y., Cheng R., Liang L., Wang Y. Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbon nanotubes composite fiber. Composites Science and Technology. 2005. 65. P. 793-797. https://doi.org/10.1016/j.compscitech.2004.10.012.
https://doi.org/10.1016/j.compscitech.2004.10.012
22. Ezquerra T.A., Mohammadi M., Kremer F., Vilgis T., Wegner G. On the percolative behaviour of polymeric insulator-conductor composites: polyethylene oxide-polypyrrole. J. Phys. C: Solid State Phys. 1988. 21, No 5. P. 927-941. https://doi.org/10.1088/0022-3719/21/5/011.
https://doi.org/10.1088/0022-3719/21/5/011
23. Hindermann-Bischoff M., Ehrburger-Dolle F. Electrical conductivity of carbon black-polyethylene composites Experimental evidence of the change of cluster connectivity in the PTC effect. Carbon. 2001. 39. P. 375-382. https://doi.org/10.1016/S0008-6223(00)00130-5.
https://doi.org/10.1016/S0008-6223(00)00130-5
24. Kuryptya Ya.A., Savchenko B.M., Kovalchuk O.V. et al. Peculiarities of near-electrode relaxation processes in the polyethylene melt filled with graphite and carbon black. SPQEO. 2016. 19, No 3. P. 290-294. https://doi.org/10.15407/spqeo19.03.290.
https://doi.org/10.15407/spqeo19.03.290
25. Feng J., Chan Ch.-M. Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers. Polymer. 2000. 41. P. 4559-4565. https://doi.org/10.1016/S0032-3861(99)00690-4.
https://doi.org/10.1016/S0032-3861(99)00690-4
26. Zhang C., Ma C.-A., Wang P., Sumita V. Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction. Carbon. 2005. 43, No 12. P. 2544-2553. https://doi.org/10.1016/j.carbon.2005.05.006.
https://doi.org/10.1016/j.carbon.2005.05.006
27. Demjen Z., Pukansky B. Effect of surface coverage of silane treated CaCO3 on the tensile properties of polypropylene composites. Polymer Composites. 1997. 18, No 6. P. 741-747. https://doi.org/10.1002/pc.10326.
https://doi.org/10.1002/pc.10326
28. Twarowski A.J., Albrecht A.C. Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene. J. Chem. Phys. 1979. 70. P. 2255.
https://doi.org/10.1063/1.437729
29. Shklovskii B.I., Efros A.L. Electronic Properties of Doped Semiconductors. Springer-Verlag, 1984.
https://doi.org/10.1007/978-3-662-02403-4