Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 285-292 (2019).
DOI:
https://doi.org/10.15407/spqeo22.03.285
References
1. Strobl G. The Physics of Polymers. Concepts for Understanding Their Structures and Behavior. Springer, 2007. | | 2. Mamunya Ye., Iurzhenko M., Lebedev E. et al. Electroactive Polymeric Materials. Kyiv, Alfa reklama, 2013 (in Russian). | | 3. Thomas S., Shanks R.A., Joy J. Micro- and Nanostructured Polymer Systems: From Synthesis to Applications. Apple Academic Press, 2016. https://doi.org/10.1201/b19859 | | 4. Pyrzynski K., Nyszko G., Zaikov G.E. Chemical and Structure Modification of Polymers. Apple Academic Press, 2016. https://doi.org/10.1201/b19300 | | 5. Amudha S., Suthanthiraraj S.A. Silver ion conducting characteristics of a polyethylene oxide-based composite polymer electrolyte and application in solid state batteries. Adv. Mater. Lett. 2015. 6, No 10. P. 874-882. https://doi.org/10.5185/amlett.2015.5831. https://doi.org/10.5185/amlett.2015.5831 | | 6. Dabbak S.Z.A., Illias H.A., Ang B.Ch. et al. Electrical properties of polyethylene/polypropylene compounds for high-voltage insulation. Energies. 2018. 11, Issue 6. P. 1448. https://doi.org/10.3390/en11061448. https://doi.org/10.3390/en11061448 | | 7. Kiraly A., Ronkay F. Temperature dependence of electrical properties in conductive polymer composites. Polymer Testing. 2015. 43. P. 154-162. https://doi.org/10.1016/j.polymertesting.2015.03.011. https://doi.org/10.1016/j.polymertesting.2015.03.011 | | 8. Agrawal R.C., Sahu D.K., Mahipal Y.K., Ashraf R. Investigations on ion transport properties of hot-press cast magnesium ion conducting Nano-Composite Polymer Electrolyte (NCPE) films: Effect of filler particle dispersal on room temperature conductivity. Mater. Chem. and Phys. 2013. 139. P. 410-415. https://doi.org/10.1016/j.matchemphys.2012.12.056. https://doi.org/10.1016/j.matchemphys.2012.12.056 | | 9. Rahaman M., Chaki T.K. and Khastgir D. Temperature dependent electrical properties of conductive composites (Behavior at cryogenic temperature and high temperatures). Adv. Mater. Res. 2010. 123-125. P. 447-450. https://doi.org/10.4028/www.scientific.net/AMR.123-125.447. https://doi.org/10.4028/www.scientific.net/AMR.123-125.447 | | 10. Carotenuto G., Nicola S.D., Ausanio G., Massarotti D., Nicolais L., Pepe G.P. Synthesis and characterization of electrically conductive polyethylene-supported graphene films. Nanoscale Res. Lett. 2014. 9. P. 475. https://doi.org/10.1186/1556-276X-9-475. https://doi.org/10.1186/1556-276X-9-475 | | 11. Hashim A., Hadi A. Syntesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials - magnesium oxide nanoparticles. Ukr. J. Phys. 2017. 62, No.12. P. 1050-1056. https://doi.org/10.15407/ujpe62.12.1050. https://doi.org/10.15407/ujpe62.12.1050 | | 12. Youyuan Wang, Can Wang, Zhanxi Zhang, Kun Xiao, Effect of nanoparticles on the morphology, thermal, and electrical properties of low-density polyethylene after thermal aging. Nanomaterials. 2017. 7. P. 320. https://doi.org/10.3390/nano7100320. https://doi.org/10.3390/nano7100320 | | 13. Reich S., Burgard M., Langner M. et al. Polymer nanofibre composite nonwovens with metal-like electrical conductivity. Flexible Electronics. 2018.5. P. 1-5. https://doi.org/10.1038/s41528-017-0018-5. https://doi.org/10.1038/s41528-017-0018-5 | | 14. He L., Tjong S.-Ch. Electrical behavior and positive temperature coefficient effect of graphene/ polyvinylidene fluoride composites containing silver. Nanoscale Res. Lett. 2014. 9. P. 375. https://doi.org/10.1186/1556-276X-9-375. https://doi.org/10.1186/1556-276X-9-375 | | 15. Park W., Hu J., Jauregui L.A., Ruan X., and Chen Y.P. Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites. Appl. Phys. Lett. 2014. 104. P. 113101. https://doi.org/10.1063/1.4869026. https://doi.org/10.1063/1.4869026 | | 16. Jovic N., Dudic D., Montone A., Antisari M.V., Mitric M. and Djokovic V. Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scripta Materialia. 2008. 58, No 10. P. 846-849. https://doi.org/10.1016/j.scriptamat.2007.12.041. https://doi.org/10.1016/j.scriptamat.2007.12.041 | | 17. Ying M.T., Wang H.W., Li R., Liu P., Liu C., and Zhang Y. Temperature-dependent electrical properties of graphene nanoplatelets film dropped on flexible substrates. J. Mater. Res. 2014. 29, No 11. P. 1288-1294. https://doi.org/10.1557/jmr.2014.109. https://doi.org/10.1557/jmr.2014.109 | | 18. Konopelnyk О.І., Aksimentyeva О.І., Horbenko Yu.Yu. Temperature dependence of conductivity in conjugated polymers doped by carbon nanotubes. Journal of Nano- and Electronic Physics. 2017. 9, No 5. P. 05011. https://doi.org/10.21272/jnep.9(5).05011. https://doi.org/10.21272/jnep.9(5).05011 | | 19. Barrau S., Demont Ph., Peigney A., Laurent Ch., Lacabanne C. DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules. 2003. 36. P. 5187-5194. https://doi.org/10.1021/ma021263b. https://doi.org/10.1021/ma021263b | | 20. Li Q., Xue Q.Z., Gao X.L., Zheng Q.B. Tem-perature dependence of the electrical properties of the carbon nanotube/polymer composites. eXPRESS Polymer Lett. 2009. 3, No 12. P. 769-777. https://doi.org/10.3144/expresspolymlett.2009.95. https://doi.org/10.3144/expresspolymlett.2009.95 | | 21. Wang Y., Cheng R., Liang L., Wang Y. Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbon nanotubes composite fiber. Composites Science and Technology. 2005. 65. P. 793-797. https://doi.org/10.1016/j.compscitech.2004.10.012. https://doi.org/10.1016/j.compscitech.2004.10.012 | | 22. Ezquerra T.A., Mohammadi M., Kremer F., Vilgis T., Wegner G. On the percolative behaviour of polymeric insulator-conductor composites: polyethylene oxide-polypyrrole. J. Phys. C: Solid State Phys. 1988. 21, No 5. P. 927-941. https://doi.org/10.1088/0022-3719/21/5/011. https://doi.org/10.1088/0022-3719/21/5/011 | | 23. Hindermann-Bischoff M., Ehrburger-Dolle F. Electrical conductivity of carbon black-polyethylene composites Experimental evidence of the change of cluster connectivity in the PTC effect. Carbon. 2001. 39. P. 375-382. https://doi.org/10.1016/S0008-6223(00)00130-5. https://doi.org/10.1016/S0008-6223(00)00130-5 | | 24. Kuryptya Ya.A., Savchenko B.M., Kovalchuk O.V. et al. Peculiarities of near-electrode relaxation processes in the polyethylene melt filled with graphite and carbon black. SPQEO. 2016. 19, No 3. P. 290-294. https://doi.org/10.15407/spqeo19.03.290. https://doi.org/10.15407/spqeo19.03.290 | | 25. Feng J., Chan Ch.-M. Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers. Polymer. 2000. 41. P. 4559-4565. https://doi.org/10.1016/S0032-3861(99)00690-4. https://doi.org/10.1016/S0032-3861(99)00690-4 | | 26. Zhang C., Ma C.-A., Wang P., Sumita V. Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction. Carbon. 2005. 43, No 12. P. 2544-2553. https://doi.org/10.1016/j.carbon.2005.05.006. https://doi.org/10.1016/j.carbon.2005.05.006 | | 27. Demjen Z., Pukansky B. Effect of surface coverage of silane treated CaCO3 on the tensile properties of polypropylene composites. Polymer Composites. 1997. 18, No 6. P. 741-747. https://doi.org/10.1002/pc.10326. https://doi.org/10.1002/pc.10326 | | 28. Twarowski A.J., Albrecht A.C. Depletion layer in organic films: Low frequency measurements in polycrystalline tetracene. J. Chem. Phys. 1979. 70. P. 2255. https://doi.org/10.1063/1.437729 | | 29. Shklovskii B.I., Efros A.L. Electronic Properties of Doped Semiconductors. Springer-Verlag, 1984. https://doi.org/10.1007/978-3-662-02403-4 | |
|
|