Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 293-298 (2019).
DOI:
https://doi.org/10.15407/spqeo22.03.293
References
1. Thelander C., Agarwal P., Brongersma S., Eymery J., Feiner L.F., Forchel A., Scheffler M., Riess W., Ohlsson B.J., Gosele U., and Samuelson L. Nanowire-based one-dimensional electronics. Materials Today. 2006. 9, No 10. P. 28-35. https://doi.org/10.1016/S1369-7021(06)71651-0. https://doi.org/10.1016/S1369-7021(06)71651-0 | | 2. Li Y., Qian F., Xiang J., and Lieber C.M. Nanowire electronic and optoelectronic devices. Materials Today. 2006. 9, No 10. P. 18-27. https://doi.org/10.1016/S1369-7021(06)71650-9. https://doi.org/10.1016/S1369-7021(06)71650-9 | | 3. Noy A. Bionanoelectronics. Adv. Mater. 2011. 23, No 7. P. 807-820. https://doi.org/10.1002/adma.201003751. https://doi.org/10.1002/adma.201003751 | | 4. Huang X.M.H., Zorman C.A., Mehregany M., and Roukes M.L. Nanodevice motion at microwave frequencies. Nature. 2003. 421. P. 496. https://doi.org/10.1038/421496a. https://doi.org/10.1038/421496a | | 5. Blick R.H., Qin H., Kim H.-S., and Marsland R. A nanomechanical computer - exploring new avenues of computing. New Journal of Physics. 2007. 9. P. 241. https://doi.org/10.1088/1367-2630/9/7/241. https://doi.org/10.1088/1367-2630/9/7/241 | | 6. Zhu Y., Xu F., Qin Q., Fung W.Y., and Lu W. Mechanical properties of vapor-liquid-solid synthesized silicon nanowires. Nano Lett. 2009. 9, No 11. P. 3934-3939. https://doi.org/10.1021/nl902132w. https://doi.org/10.1021/nl902132w | | 7. Stan G., Krylyuk S., Davydov A.V., Levin I., and Cook R.F. Ultimate bending strength of Si nanowires. Nano Lett. 2012. 12, No 5. P. 2599-2604. https://doi.org/10.1021/nl300957a. https://doi.org/10.1021/nl300957a | | 8. Tang D.-M., Ren C.-L., Wang M.-S., Wei X., Kawamoto N., Liu C., Bando Y., Mitome M., Fukata N., and Golberg D. Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett. 2012. 12, No 4. P. 1898-1904. https://doi.org/10.1021/nl204282y. https://doi.org/10.1021/nl204282y | | 9. Wang L., Zheng K., Zhang Z., and Han X. Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires. Nano Lett. 2011. 11, No 6. P. 2382-2385. https://doi.org/10.1021/nl200735p. https://doi.org/10.1021/nl200735p | | 10. Hoffmann S., Utke I., Moser B., Michter J., Christiansen S.H., Schmidt V., Senz S., Werner P. Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 2006. 6. P. 622-625. https://doi.org/10.1021/nl052223z. https://doi.org/10.1021/nl052223z | | 11. Singh R.A., Satyanarayana N., and Sinha S.K. Surface chemical modification for exceptional wear life of MEMS materials. AIP Advances. 2011. 1. P. 042141. https://doi.org/10.1063/1.3662096. https://doi.org/10.1063/1.3662096 | | 12. De Wolf I. Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semiconductor Sci. Technol. 1996. 11, No 2. P. 139-154. http://doi.org/10.1088/0268-1242/11/2/001. https://doi.org/10.1088/0268-1242/11/2/001 | | 13. Sharma S., Kamins T.I., and Stanley W.R. Diameter control of Ti-catalyzed silicon nanowires. J. Cryst. Growth. 2004. 267, No 3-4. P. 613-618. https://doi.org/10.1016/j.jcrysgro.2004.04.042. https://doi.org/10.1016/j.jcrysgro.2004.04.042 | | 14. Chernov A.A. Modern Crystallography III. Cry-stal Growth with contributions by E.I. Givargizov, K.S. Bagdasarov, V.A. Kuznetsov, L.N. Demianets, A.N. Lo-bachev. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984. https://doi.org/10.1002/crat.2170200231. https://doi.org/10.1002/crat.2170200231 | | 15. Leamy H.J.J. Charge collection scanning microscopy. Appl. Phys. 1982. 53. P. 51-80. https://doi.org/10.1063/1.331667. https://doi.org/10.1063/1.331667 | | 16. Feher G., Hensel J.C., and Gere E.A. Para-magnetic resonance absorption from acceptors in silicon. Phys. Rev. Lett. 1960. 5. P. 309. https://doi.org/10.1103/PhysRevLett.5.309. https://doi.org/10.1103/PhysRevLett.5.309 | | 17. Kobliska R.J. and Solin S.A. Raman spectrum of wurtzite silicon. Phys. Rev. B. 1973. 8. P. 3799. https://doi.org/10.1103/PhysRevB.8.3799. https://doi.org/10.1103/PhysRevB.8.3799 | | 18. Klimovskaya A.I., Kalashnyk Yu.Yu., Voroshchenko A.T., Oberemok O.C., Pedchenko Yu.M., Lytvyn P.M. Growth of silicon self-assembled nanowires by using gold-enhanced CVD technology. SPQEO. 2018. 21, No 3. P. 282-287. https://doi.org/10.15407/spqeo21.03.282. https://doi.org/10.15407/spqeo21.03.282 | | 19. Takimoto K., Fukuta A., Yamamoto Y., Yoshida N., Itoh T., Nonomur S. Linear thermal expansion coefficients of amorphous and micro-crystalline silicon films. J. Non-Crystal. Solids. 2002. 299-302. P. 314-317. https://doi.org/10.1016/S0022-3093(02)00930-4. https://doi.org/10.1016/S0022-3093(02)00930-4 | | 20. Schmidt V., Senz S., Gosele U. The shape of epitaxially grown silicon nanowires and the influence of line tension. Appl. Phys. 2005. 80, No 3. P. 445-450. https://doi.org/10.1007/s00339-004-3092-1. https://doi.org/10.1007/s00339-004-3092-1 | | 21. Clyne T.W., 4.1.3b. Residual Stresses in Thick and Thin Surface Coatings. Encyclopedia of Materials: Science and Technology. Elsevier, 2001. | | 22. Nikolenko A., Strelchuk V., Klimovskaya A. et al. Scanning confocal Raman spectroscopy of silicon phase distribution in individual Si nanowires. phys. status solidi (c). 2011. 8, No 3. P. 1012-1016. https://doi.org/10.1002/pssc.201000409. https://doi.org/10.1002/pssc.201000409 | | 23. Kumar R. and Kumar M. Size dependence of thermo-elastic properties of nanomaterials. Intern. J. Nanosci. 2010. 9, No 5. P. 537-542. https://doi.org/10.1142/S0219581X1000711. https://doi.org/10.1142/S0219581X10007113 | |
|
|