Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 310-318 (2019).
DOI:
https://doi.org/10.15407/spqeo22.03.310
References
1. Kovalenko M.V., Manna L., Cabot A. et al. Prospects of nanoscience with nanocrystals. ACS Nano. 2015. 9. P. 1012-1057. https://doi.org/10.1021/nn506223h. https://doi.org/10.1021/nn506223h | | 2. Pietryga J.M., Park Y.S., Lim J. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev.2016. 116. P. 10513-10622. https://doi.org/10.1021/acs.chemrev.6b00169. https://doi.org/10.1021/acs.chemrev.6b00169 | | 3. Harris R.D., Homan S.B., Kodaimati M. et al. Electronic processes within quantum dot-molecule complexes. Chem. Rev. 2016. 116, Issue 21. P. 12865-12919. https://doi.org/10.1021/acs.chemrev.6b00102. https://doi.org/10.1021/acs.chemrev.6b00102 | | 4. Krause M.M., Jethi L., Mack T.G., Kambhampati P. Ligand surface chemistry dictates light emission from nanocrystals. J. Phys. Chem. Lett. 2015. 6. P. 4292-4296. https://doi.org/10.1021/acs.jpclett.5b02015. https://doi.org/10.1021/acs.jpclett.5b02015 | | 5. Baker D.R., Kamat P.V. Tuning the emission of CdSe quantum dots by controlled trap enhancement. Langmuir. 2010. 26. P. 11272-11276. https://doi.org/10.1021/la100580g. https://doi.org/10.1021/la100580g | | 6. Sayevich V., Guhrenz C., Sin M. et al. Chloride and indium-chloride-complex inorganic ligands for efficient stabilization of nanocrystals in solution and doping of nanocrystal solids. Adv. Funct. Mater. 2016. 26. P. 2163-2175. https://doi.org/10.1002/adfm.201504767. https://doi.org/10.1002/adfm.201504767 | | 7. Raevskaya A.E., Grodzyuk G.Y., Stroyuk A.L. et al. Preparation and spectral properties of high-efficiency luminescent polyethylenimine-stabilized CdS quantum dots. Theor. Exp. Chem. 2010. 46. P. 233-238. https://doi.org/10.1007/s11237-010-9145-y. https://doi.org/10.1007/s11237-010-9145-y | | 8. Dzhagan V.M., Valakh M.Y., Himcinschi C. et al. Raman and infrared phonon spectra of ultrasmall colloidal CdS nanoparticles. J. Phys. Chem. C. 2014. 118. P. 19492-19497. https://doi.org/10.1021/jp506307q. https://doi.org/10.1021/jp506307q | | 9. Smirnov M.S., Ovchinnikov O.V., Dedikova A.O. et al. Luminescence properties of hybrid associates of colloidal CdS quantum dots with J-aggregates of thiatrimethine cyanine dye. J. Lumin. 2016. 76. P. 77-85. https://doi.org/10.1016/j.jlumin.2016.03.015. https://doi.org/10.1016/j.jlumin.2016.03.015 | | 10. Jing L., Kershaw S.V., Li Y. et al. Aqueous based semiconductor nanocrystals. Chem. Rev.2016. 116. P. 10623−10730. https://doi.org/10.1021/acs.chemrev.6b00041. https://doi.org/10.1021/acs.chemrev.6b00041 | | 11. Chestnoy N., Harris T.D., Hull R., Brus L.E. Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. J. Phys. Chem. 1986. 90. P. 3393-3399. https://doi.org/10.1021/j100406a018. https://doi.org/10.1021/j100406a018 | | 12. Dukes A.D., Samson P.C., Keene J.D. et al. Single-nanocrystal spectroscopy of white-light-emitting CdSe nanocrystals. J. Phys. Chem. A. 2011. 115. P. 4076-4081. https://doi.org/10.1021/jp1109509. https://doi.org/10.1021/jp1109509 | | 13. Whitham P.J., Marchioro A., Knowles K.E. et al. Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals. J. Phys. Chem. C. 2016. 120. P. 17136-17142. https://doi.org/10.1021/acs.jpcc.6b06425. https://doi.org/10.1021/acs.jpcc.6b06425 | | 14. Stroyuk O. L., Raevskaya A. E., Gaponik N. et al. Origin of the broadband photoluminescence of pristine and Cu+/Ag+-doped ultra-small CdS and CdSe/CdS quantum dots. J. Phys. Chem. C. 2018. 122. P. 10267−10277. https://doi.org/10.1021/acs.jpcc.8b02337. https://doi.org/10.1021/acs.jpcc.8b02337 | | 15. Mack T.G., Jethi L., Kambhampati P. Temperature dependence of emission line widths from semiconductor nanocrystals reveals vibronic contributions to line broadening processes. J. Phys. Chem. C. 2017. 21. P. 28537−28545. https://doi.org/10.1021/acs.jpcc.7b09903. https://doi.org/10.1021/acs.jpcc.7b09903 | | 16. Kobitski A.Y., Zhuravlev K.S., Wagner H.P., Zahn D.R.T. Self-trapped exciton recombination in silicon nanocrystals. Phys. Rev. B: Condens. Matter. 2001. 63. P. 115423. https://doi.org/10.1103/PhysRevB.63.115423. https://doi.org/10.1103/PhysRevB.63.115423 | | 17. Hamanaka Y., Ogawa T., Tsuzuki M., Kuzuya T. Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J. Phys. Chem. C. 2011. 115. P. 1786-1792. https://doi.org/10.1021/jp110409q. https://doi.org/10.1021/jp110409q | | 18. Stroyuk O., Raevskaya A., Spranger F. et al. Origin and Dynamics of highly-efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots origin and dynamics of highly-efficient broadband photo-luminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots. J. Phys. Chem. C. 2018. 122, No 25. P. 13648-13658. https://doi.org/10.1021/acs.jpcc.8b00106. https://doi.org/10.1021/acs.jpcc.8b00106 | | 19. Knowles K.E., Nelson H.D., Kilburn T.B., Gamelin D.R. Singlet-triplet splittings in the luminescent excited states of colloidal Cu+:CdSe, Cu+:InP, and CuInS2 nanocrystals: Charge-transfer configurations and self-trapped excitons. J. Am. Chem. Soc. 2015. 137. P. 13138-13147. https://doi.org/10.1021/jacs.5b08547. https://doi.org/10.1021/jacs.5b08547 | | 20. Houtepen A.J., Hens Z., Owen J.S., Infante I. On the origin of surface traps in colloidal II-VI semiconductor nanocrystals. Chem. Mater. 2017. 29. P.752-761. https://doi.org/10.1021/acs.chemmater.6b04648. https://doi.org/10.1021/acs.chemmater.6b04648 | | 21. Mooney J., Krause M.M., Saari J.I., Kambhampati P. Challenge to the deep-trap model of the surface in semiconductor nanocrystals. Phys. Rev. B. 2013. 87. P. 081201(R). https://doi.org/10.1103/PhysRevB.87.081201. https://doi.org/10.1103/PhysRevB.87.081201 | | 22. Nakabayashi T., Wahadoszamen M., Ohta N. External electric field effects on state energy and photoexcitation dynamics of diphenylpolyenes. J. Am. Chem. Soc. 2005. 127. P. 7041-7052. https://doi.org/10.1021/ja0401444. https://doi.org/10.1021/ja0401444 | | 23. Borkovska L., Korsunska N., Stara T. et al. Enhancement of the photoluminescence in CdSe quantum dot-polyvinyl alcohol composite by light irradiation. Appl. Surf. Sci. 2013. 281. P. 118-122. https://doi.org/10.1016/j.apsusc.2012.12.146. https://doi.org/10.1016/j.apsusc.2012.12.146 | | 24. Mansur A.A.P., Ramanery F.P., Mansur H.S.. Water-soluble quantum dot/carboxylic-poly (vinyl alcohol) conjugates: insights into the roles of nanointerfaces and defects toward enhancing photoluminescence behavior. Mater. Chem. Phys. 2013. 141. P. 223-233. https://doi.org/10.1016/j.matchemphys.2013.05.004. https://doi.org/10.1016/j.matchemphys.2013.05.004 | | 25. Mahmoud W.E., El-Mallah H.M. Synthesis and characterization of PVP-capped CdSe nanoparticles embedded in PVA matrix for photovoltaic application. J. Phys. D. Appl. Phys. 2009. 42. P. 35502. https://doi.org/10.1088/0022-3727/42/3/035502. https://doi.org/10.1088/0022-3727/42/3/035502 | | 26. Pattabi M., Saraswathi A. B. Optical properties of CdS-PVA nanocomposites. Compos. Interfaces. 2010. 17. P. 103-111. https://doi.org/10.1088/0256-307X/30/5/057803. https://doi.org/10.1088/0256-307X/30/5/057803 | | 27. Guan X., Fan H., Jia T. et al. A versatile synthetic approach to covalent binding of polymer brushes on CdSe/CdS quantum dots surface: multitype modification of nanocrystals. Macromol. Chem. Phys. 2016. 217, No 5. P. 664-671. https://doi.org/10.1002/macp.201500323. https://doi.org/10.1002/macp.201500323 | | 28. Suo B., Su X., Wu J. et al. Poly (Vinyl Alcohol) thin film filled with CdSe-ZnS quantum dots: fabrication, characterization and optical properties. Mater. Chem. Phys. 2010. 119. P. 237-242. https://doi.org/10.1016/j.matchemphys.2009.08.054. https://doi.org/10.1016/j.matchemphys.2009.08.054 | | 29. Kovalchuk A.O., Rudko G.Y., Fediv V.I., Gule E.G. Analysis of conditions for synthesis of CdS:Mn nanoparticles. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2015. 18. P. 74-78. https://doi.org/10.15407/spqeo18.01.074. https://doi.org/10.15407/spqeo18.01.074 | | 30. Rayevska O.E., Grodzyuk G.Y., Dzhagan V.M. et al. Synthesis and characterization of white-emitting CdS quantum dots stabilized with poly-ethylenimine. J. Phys. Chem. C 2010. 114. P. 22478-22486. https://doi.org/10.1021/jp108561u. https://doi.org/10.1021/jp108561u | | 31. Rudko G.Y., Kovalchuk A.O., Fediv V. I. et al. Role of the host polymer matrix in light emission processes in nano-CdS/poly vinyl alcohol composite. Thin Solid Films. 2013. 543. P. 11-15. https://doi.org/10.1016/j.tsf.2013.04.035. https://doi.org/10.1016/j.tsf.2013.04.035 | | 32. Raevskaya A.E., Stroyuk O.L., Solonenko D.I. et al. Synthesis and luminescent properties of ultrasmall colloidal CdS nanoparticles stabilized by Cd(II) complexes with ammonia and mercaptoacetate. J. Nanoparticle Res. 2014. 16. P. 2650. https://doi.org/10.1007/s11051-014-2650-5. https://doi.org/10.1007/s11051-014-2650-5 | | 33. Raevskaya A.E., Stroyuk O.L., Panasiuk Y.V. et al. A new route to very stable water-soluble ultra-small core/shell CdSe/CdS quantum dots. Nano-Structures & Nano-Objects. 2018. 13. P. 146-154. https://doi.org/10.1016/j.nanoso.2015.12.001. https://doi.org/10.1016/j.nanoso.2015.12.001 | | 34. Rudko G.Yu., Vorona I.P., Fediv V.I. et al. Luminescent and optically detected magnetic resonance studies of CdS/PVA nanocomposite. Nanoscale Res. Lett. 2017. 12. P. 130. https://doi.org/10.1186/s11671-017-1892-4. https://doi.org/10.1186/s11671-017-1892-4 | | 35. Taylor P., Cavenett B.C. Optically Detected Magnetic Resonance (O. D. M. R.) investigations of recombination processes in semiconductors. Adv. Phys. 1981. 30, No 4. P. 37-41. https://doi.org/10.1080/00018738100101397. https://doi.org/10.1080/00018738100101397 | | 36. Wang X.J., Puttisong Y., Tu C.W. et al. Dominant recombination centers in Ga(In)NAs alloys: Ga interstitials. Appl. Phys. Lett. 2009. 95. P. 95-98. https://doi.org/10.1063/1.3275703. https://doi.org/10.1063/1.3275703 | | 37. Stehr J.E., Dobrovolsky A., Sukrittanon S. et al. Optimizing GaNP coaxial nanowires for efficient light emission by controlling formation of surface and interfacial defects. Nano Lett. 2015. 15. P. 242-247. https://doi.org/10.1021/nl503454s. https://doi.org/10.1021/nl503454s | | 38. Dobrovolsky A., Stehr J. E., Chen S.L. et al. Mechanism for radiative recombination and defect properties of GaP/GaNP core/shell nanowires. Appl. Phys. Lett. 2012. 101. P. 1-5. https://doi.org/10.1063/1.4760273. https://doi.org/10.1063/1.4760273 | | 39. Stehr J.E., Chen S.L., Filippov S. et al. Defect properties of ZnO nanowires revealed from an optically detected magnetic resonance study. Nanotechnology. 2013. 24, No 1. P. 015701. https://doi.org/10.1088/0957-4484/24/1/015701. https://doi.org/10.1088/0957-4484/24/1/015701 | | 40. Keeble D.J., Thomsen E.A., Stavrinadis A. et al. Paramagnetic point defects and charge carriers in PbS and CdS nanocrystal polymer composites. J. Phys. Chem. C. 2009. 113. P. 17306-17312. https://doi.org/10.1021/jp9044429. https://doi.org/10.1021/jp9044429 | | 41. Sootha G.D., Padam G.K., Gupta S. K. Identification of oxygen radicals in CdS by ESR. phys. status. solidi. 1980. 58. P. 615-622. https://doi.org/10.1002/pssa.2210580235. https://doi.org/10.1002/pssa.2210580235 | | 42. Vorona I.P., Nosenko V.V., Baran N.P. et al. EPR study of radiation-induced defects in carbonate-containing hydroxyapatite annealed at high temperature. Radiat. Meas. 2016. 87. P. 49-55. https://doi.org/10.1016/j.radmeas.2016.02.020. https://doi.org/10.1016/j.radmeas.2016.02.020 | | 43. Aseltine C.L., Kim Y.W. EPR studies of the thermal decay of the OH radicals in electron irradiated lithium sulfate at 77°K. J. Phys. Chem. Solids. 1968. 29. P. 531-539. https://doi.org/10.1016/0022-3697(68)90130-3. https://doi.org/10.1016/0022-3697(68)90130-3 | | 44. Känzig W., Cohen M.H. Paramagnetic resonance of oxygen in alkali halides. Phys. Rev. Lett. 1959. 3. P. 509-510. https://doi.org/10.1103/PhysRevLett.3.509. https://doi.org/10.1103/PhysRevLett.3.509 | |
|
|