Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 310-318 (2019).
DOI: https://doi.org/10.15407/spqeo22.03.310


References

1. Kovalenko M.V., Manna L., Cabot A. et al. Prospects of nanoscience with nanocrystals. ACS Nano. 2015. 9. P. 1012-1057. https://doi.org/10.1021/nn506223h.
https://doi.org/10.1021/nn506223h
2. Pietryga J.M., Park Y.S., Lim J. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev.2016. 116. P. 10513-10622. https://doi.org/10.1021/acs.chemrev.6b00169.
https://doi.org/10.1021/acs.chemrev.6b00169
3. Harris R.D., Homan S.B., Kodaimati M. et al. Electronic processes within quantum dot-molecule complexes. Chem. Rev. 2016. 116, Issue 21. P. 12865-12919. https://doi.org/10.1021/acs.chemrev.6b00102.
https://doi.org/10.1021/acs.chemrev.6b00102
4. Krause M.M., Jethi L., Mack T.G., Kambhampati P. Ligand surface chemistry dictates light emission from nanocrystals. J. Phys. Chem. Lett. 2015. 6. P. 4292-4296. https://doi.org/10.1021/acs.jpclett.5b02015.
https://doi.org/10.1021/acs.jpclett.5b02015
5. Baker D.R., Kamat P.V. Tuning the emission of CdSe quantum dots by controlled trap enhancement. Langmuir. 2010. 26. P. 11272-11276. https://doi.org/10.1021/la100580g.
https://doi.org/10.1021/la100580g
6. Sayevich V., Guhrenz C., Sin M. et al. Chloride and indium-chloride-complex inorganic ligands for efficient stabilization of nanocrystals in solution and doping of nanocrystal solids. Adv. Funct. Mater. 2016. 26. P. 2163-2175. https://doi.org/10.1002/adfm.201504767.
https://doi.org/10.1002/adfm.201504767
7. Raevskaya A.E., Grodzyuk G.Y., Stroyuk A.L. et al. Preparation and spectral properties of high-efficiency luminescent polyethylenimine-stabilized CdS quantum dots. Theor. Exp. Chem. 2010. 46. P. 233-238. https://doi.org/10.1007/s11237-010-9145-y.
https://doi.org/10.1007/s11237-010-9145-y
8. Dzhagan V.M., Valakh M.Y., Himcinschi C. et al. Raman and infrared phonon spectra of ultrasmall colloidal CdS nanoparticles. J. Phys. Chem. C. 2014. 118. P. 19492-19497. https://doi.org/10.1021/jp506307q.
https://doi.org/10.1021/jp506307q
9. Smirnov M.S., Ovchinnikov O.V., Dedikova A.O. et al. Luminescence properties of hybrid associates of colloidal CdS quantum dots with J-aggregates of thiatrimethine cyanine dye. J. Lumin. 2016. 76. P. 77-85. https://doi.org/10.1016/j.jlumin.2016.03.015.
https://doi.org/10.1016/j.jlumin.2016.03.015
10. Jing L., Kershaw S.V., Li Y. et al. Aqueous based semiconductor nanocrystals. Chem. Rev.2016. 116. P. 10623−10730. https://doi.org/10.1021/acs.chemrev.6b00041.
https://doi.org/10.1021/acs.chemrev.6b00041
11. Chestnoy N., Harris T.D., Hull R., Brus L.E. Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. J. Phys. Chem. 1986. 90. P. 3393-3399. https://doi.org/10.1021/j100406a018.
https://doi.org/10.1021/j100406a018
12. Dukes A.D., Samson P.C., Keene J.D. et al. Single-nanocrystal spectroscopy of white-light-emitting CdSe nanocrystals. J. Phys. Chem. A. 2011. 115. P. 4076-4081. https://doi.org/10.1021/jp1109509.
https://doi.org/10.1021/jp1109509
13. Whitham P.J., Marchioro A., Knowles K.E. et al. Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals. J. Phys. Chem. C. 2016. 120. P. 17136-17142. https://doi.org/10.1021/acs.jpcc.6b06425.
https://doi.org/10.1021/acs.jpcc.6b06425
14. Stroyuk O. L., Raevskaya A. E., Gaponik N. et al. Origin of the broadband photoluminescence of pristine and Cu+/Ag+-doped ultra-small CdS and CdSe/CdS quantum dots. J. Phys. Chem. C. 2018. 122. P. 10267−10277. https://doi.org/10.1021/acs.jpcc.8b02337.
https://doi.org/10.1021/acs.jpcc.8b02337
15. Mack T.G., Jethi L., Kambhampati P. Temperature dependence of emission line widths from semiconductor nanocrystals reveals vibronic contributions to line broadening processes. J. Phys. Chem. C. 2017. 21. P. 28537−28545. https://doi.org/10.1021/acs.jpcc.7b09903.
https://doi.org/10.1021/acs.jpcc.7b09903
16. Kobitski A.Y., Zhuravlev K.S., Wagner H.P., Zahn D.R.T. Self-trapped exciton recombination in silicon nanocrystals. Phys. Rev. B: Condens. Matter. 2001. 63. P. 115423. https://doi.org/10.1103/PhysRevB.63.115423.
https://doi.org/10.1103/PhysRevB.63.115423
17. Hamanaka Y., Ogawa T., Tsuzuki M., Kuzuya T. Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J. Phys. Chem. C. 2011. 115. P. 1786-1792. https://doi.org/10.1021/jp110409q.
https://doi.org/10.1021/jp110409q
18. Stroyuk O., Raevskaya A., Spranger F. et al. Origin and Dynamics of highly-efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots origin and dynamics of highly-efficient broadband photo-luminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots. J. Phys. Chem. C. 2018. 122, No 25. P. 13648-13658. https://doi.org/10.1021/acs.jpcc.8b00106.
https://doi.org/10.1021/acs.jpcc.8b00106
19. Knowles K.E., Nelson H.D., Kilburn T.B., Gamelin D.R. Singlet-triplet splittings in the luminescent excited states of colloidal Cu+:CdSe, Cu+:InP, and CuInS2 nanocrystals: Charge-transfer configurations and self-trapped excitons. J. Am. Chem. Soc. 2015. 137. P. 13138-13147. https://doi.org/10.1021/jacs.5b08547.
https://doi.org/10.1021/jacs.5b08547
20. Houtepen A.J., Hens Z., Owen J.S., Infante I. On the origin of surface traps in colloidal II-VI semiconductor nanocrystals. Chem. Mater. 2017. 29. P.752-761. https://doi.org/10.1021/acs.chemmater.6b04648.
https://doi.org/10.1021/acs.chemmater.6b04648
21. Mooney J., Krause M.M., Saari J.I., Kambhampati P. Challenge to the deep-trap model of the surface in semiconductor nanocrystals. Phys. Rev. B. 2013. 87. P. 081201(R). https://doi.org/10.1103/PhysRevB.87.081201.
https://doi.org/10.1103/PhysRevB.87.081201
22. Nakabayashi T., Wahadoszamen M., Ohta N. External electric field effects on state energy and photoexcitation dynamics of diphenylpolyenes. J. Am. Chem. Soc. 2005. 127. P. 7041-7052. https://doi.org/10.1021/ja0401444.
https://doi.org/10.1021/ja0401444
23. Borkovska L., Korsunska N., Stara T. et al. Enhancement of the photoluminescence in CdSe quantum dot-polyvinyl alcohol composite by light irradiation. Appl. Surf. Sci. 2013. 281. P. 118-122. https://doi.org/10.1016/j.apsusc.2012.12.146.
https://doi.org/10.1016/j.apsusc.2012.12.146
24. Mansur A.A.P., Ramanery F.P., Mansur H.S.. Water-soluble quantum dot/carboxylic-poly (vinyl alcohol) conjugates: insights into the roles of nanointerfaces and defects toward enhancing photoluminescence behavior. Mater. Chem. Phys. 2013. 141. P. 223-233. https://doi.org/10.1016/j.matchemphys.2013.05.004.
https://doi.org/10.1016/j.matchemphys.2013.05.004
25. Mahmoud W.E., El-Mallah H.M. Synthesis and characterization of PVP-capped CdSe nanoparticles embedded in PVA matrix for photovoltaic application. J. Phys. D. Appl. Phys. 2009. 42. P. 35502. https://doi.org/10.1088/0022-3727/42/3/035502.
https://doi.org/10.1088/0022-3727/42/3/035502
26. Pattabi M., Saraswathi A. B. Optical properties of CdS-PVA nanocomposites. Compos. Interfaces. 2010. 17. P. 103-111. https://doi.org/10.1088/0256-307X/30/5/057803.
https://doi.org/10.1088/0256-307X/30/5/057803
27. Guan X., Fan H., Jia T. et al. A versatile synthetic approach to covalent binding of polymer brushes on CdSe/CdS quantum dots surface: multitype modification of nanocrystals. Macromol. Chem. Phys. 2016. 217, No 5. P. 664-671. https://doi.org/10.1002/macp.201500323.
https://doi.org/10.1002/macp.201500323
28. Suo B., Su X., Wu J. et al. Poly (Vinyl Alcohol) thin film filled with CdSe-ZnS quantum dots: fabrication, characterization and optical properties. Mater. Chem. Phys. 2010. 119. P. 237-242. https://doi.org/10.1016/j.matchemphys.2009.08.054.
https://doi.org/10.1016/j.matchemphys.2009.08.054
29. Kovalchuk A.O., Rudko G.Y., Fediv V.I., Gule E.G. Analysis of conditions for synthesis of CdS:Mn nanoparticles. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2015. 18. P. 74-78. https://doi.org/10.15407/spqeo18.01.074.
https://doi.org/10.15407/spqeo18.01.074
30. Rayevska O.E., Grodzyuk G.Y., Dzhagan V.M. et al. Synthesis and characterization of white-emitting CdS quantum dots stabilized with poly-ethylenimine. J. Phys. Chem. C 2010. 114. P. 22478-22486. https://doi.org/10.1021/jp108561u.
https://doi.org/10.1021/jp108561u
31. Rudko G.Y., Kovalchuk A.O., Fediv V. I. et al. Role of the host polymer matrix in light emission processes in nano-CdS/poly vinyl alcohol composite. Thin Solid Films. 2013. 543. P. 11-15. https://doi.org/10.1016/j.tsf.2013.04.035.
https://doi.org/10.1016/j.tsf.2013.04.035
32. Raevskaya A.E., Stroyuk O.L., Solonenko D.I. et al. Synthesis and luminescent properties of ultrasmall colloidal CdS nanoparticles stabilized by Cd(II) complexes with ammonia and mercaptoacetate. J. Nanoparticle Res. 2014. 16. P. 2650. https://doi.org/10.1007/s11051-014-2650-5.
https://doi.org/10.1007/s11051-014-2650-5
33. Raevskaya A.E., Stroyuk O.L., Panasiuk Y.V. et al. A new route to very stable water-soluble ultra-small core/shell CdSe/CdS quantum dots. Nano-Structures & Nano-Objects. 2018. 13. P. 146-154. https://doi.org/10.1016/j.nanoso.2015.12.001.
https://doi.org/10.1016/j.nanoso.2015.12.001
34. Rudko G.Yu., Vorona I.P., Fediv V.I. et al. Luminescent and optically detected magnetic resonance studies of CdS/PVA nanocomposite. Nanoscale Res. Lett. 2017. 12. P. 130. https://doi.org/10.1186/s11671-017-1892-4.
https://doi.org/10.1186/s11671-017-1892-4
35. Taylor P., Cavenett B.C. Optically Detected Magnetic Resonance (O. D. M. R.) investigations of recombination processes in semiconductors. Adv. Phys. 1981. 30, No 4. P. 37-41. https://doi.org/10.1080/00018738100101397.
https://doi.org/10.1080/00018738100101397
36. Wang X.J., Puttisong Y., Tu C.W. et al. Dominant recombination centers in Ga(In)NAs alloys: Ga interstitials. Appl. Phys. Lett. 2009. 95. P. 95-98. https://doi.org/10.1063/1.3275703.
https://doi.org/10.1063/1.3275703
37. Stehr J.E., Dobrovolsky A., Sukrittanon S. et al. Optimizing GaNP coaxial nanowires for efficient light emission by controlling formation of surface and interfacial defects. Nano Lett. 2015. 15. P. 242-247. https://doi.org/10.1021/nl503454s.
https://doi.org/10.1021/nl503454s
38. Dobrovolsky A., Stehr J. E., Chen S.L. et al. Mechanism for radiative recombination and defect properties of GaP/GaNP core/shell nanowires. Appl. Phys. Lett. 2012. 101. P. 1-5. https://doi.org/10.1063/1.4760273.
https://doi.org/10.1063/1.4760273
39. Stehr J.E., Chen S.L., Filippov S. et al. Defect properties of ZnO nanowires revealed from an optically detected magnetic resonance study. Nanotechnology. 2013. 24, No 1. P. 015701. https://doi.org/10.1088/0957-4484/24/1/015701.
https://doi.org/10.1088/0957-4484/24/1/015701
40. Keeble D.J., Thomsen E.A., Stavrinadis A. et al. Paramagnetic point defects and charge carriers in PbS and CdS nanocrystal polymer composites. J. Phys. Chem. C. 2009. 113. P. 17306-17312. https://doi.org/10.1021/jp9044429.
https://doi.org/10.1021/jp9044429
41. Sootha G.D., Padam G.K., Gupta S. K. Identification of oxygen radicals in CdS by ESR. phys. status. solidi. 1980. 58. P. 615-622. https://doi.org/10.1002/pssa.2210580235.
https://doi.org/10.1002/pssa.2210580235
42. Vorona I.P., Nosenko V.V., Baran N.P. et al. EPR study of radiation-induced defects in carbonate-containing hydroxyapatite annealed at high temperature. Radiat. Meas. 2016. 87. P. 49-55. https://doi.org/10.1016/j.radmeas.2016.02.020.
https://doi.org/10.1016/j.radmeas.2016.02.020
43. Aseltine C.L., Kim Y.W. EPR studies of the thermal decay of the OH radicals in electron irradiated lithium sulfate at 77°K. J. Phys. Chem. Solids. 1968. 29. P. 531-539. https://doi.org/10.1016/0022-3697(68)90130-3.
https://doi.org/10.1016/0022-3697(68)90130-3
44. Känzig W., Cohen M.H. Paramagnetic resonance of oxygen in alkali halides. Phys. Rev. Lett. 1959. 3. P. 509-510. https://doi.org/10.1103/PhysRevLett.3.509.
https://doi.org/10.1103/PhysRevLett.3.509