Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 319-322 (2019).
DOI:
https://doi.org/10.15407/spqeo22.03.319
References
1. Weng Cho Chew, Mei Song Tong, Bin Hu, Integral Equation Methods for Electromagnetic and Elastic Waves. Morgan Claypool Publishers, 2009. https://doi.org/10.2200/S00102ED1V01Y200807CEM012. https://doi.org/10.2200/S00102ED1V01Y200807CEM012 | | 2. Faddeev L.D. and Merkuriev S.P. Quantum Scattering Theory for Several Particle Systems. Springer Science+Business Media, 1993. https://doi.org/10.1007/978-94-017-2832-4. https://doi.org/10.1007/978-94-017-2832-4 | | 3. Xiang-Yao Wu, Bai-Jun Zhang, Hai-Bo Lia Xiao-Jing Liu, Jing-Wu Li and Yi-Qing Guo, Quantum wave equation of non-conservative system. Int. J. Theor. Phys. 2009. 48. P. 2027-2035. https://doi.org/10.1007/s10773-009-9978-0. https://doi.org/10.1007/s10773-009-9978-0 | | 4. Visinelli L. and Gondolo P. An integral equation for distorted wave amplitudes. Arxiv preprint arXiv:1007.2903, 2010. | | 5. Barlette V.E., Leite M.M., and Adhikari S.K. Integral equations of scattering in one dimension. Am. J. Phys. 2001. 69. P. 1010-1013. https://doi.org/10.1119/1.1371011. https://doi.org/10.1119/1.1371011 | | 6. Norsen T. Foundations of Quantum Mechanics an Exploration of the Physical Meaning of Quantum Theory. Springer, 2017. https://doi.org/10.1007/978-3-319-65867-4. https://doi.org/10.1007/978-3-319-65867-4 | | 7. Tobocman W. and Foldy L.L. Integral equations for the Schrödinger wave function. Am. J. Phys. 1959. 27. P. 483-490. https://doi.org/10.1119/1.1996206. https://doi.org/10.1119/1.1996206 | | 8. Ick-Soon Chang, Sheon-Young Kang, Fredholm integral equation method for the integro-differential Schrödinger equation. Computers and Mathematics with Applications. 2008. 56. P. 2676-2685. https://doi.org/10.1016/j.camwa.2008.05.027. https://doi.org/10.1016/j.camwa.2008.05.027 | | 9. Mikulski D., Eder K., Konarski J. Fredholm integral equation for the perturbation theory in quantum mechanics. J. Math. Chem. 2014. 52. P. 2317-2321. https://doi.org/10.1007/s10910-014-0387-0. https://doi.org/10.1007/s10910-014-0387-0 | | 10. Lienert M. and Tumulka R. A new class of Volterra-type integral equations from relativistic quantum physics. arXiv:1803.08792 [math-ph]. | |
|
|