Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 323-325 (2019).
DOI: https://doi.org/10.15407/spqeo22.03.323


References

1. Rossiter P.L. The Electrical Resistivity of Metal and Alloys. London, Cambridge Univ. Press, 1987.
https://doi.org/10.1017/CBO9780511600289
2. Shimoji M. Liquid Metals. London, Academic Press, 1977.
3. Ashcroft N.W. and Langreth D.C. Structure of binary liquid mixtures. II. Resistivity of alloys and the ion-ion interaction. Phys. Rev. 1967. 159, No 3. P. 500. https://doi.org/10.1103/PhysRev.159.500.
https://doi.org/10.1103/PhysRev.159.500
4. Faber T.E. & Ziman J.M. A theory of the electrical properties of liquid metals. Phil. Mag. 1965. 11, No 109. P. 153-173. https://doi.org/10.1080/14786436508211931.
https://doi.org/10.1080/14786436508211931
5. Holzhey Ch., Coufal H., Schubert G. et al. The electrical resistivity of liquid Cu1-xGax-alloys. Zeitschrift für Physik B. 1979. 33, No 1. P. 25-29.
https://doi.org/10.1007/BF01325810
6. Vora A.M. Electrical resistivity of Li-based liquid binary mixtures. Opto. Adv. Mater. - Rapid Commun. 2007. 1, No 5. P. 227-230.
7. Vora A.M. Electrical resistivity of liquid alkali Na-based binary alloys. Turkish J. Phys. 2007. 31. P. 341.
8. Vora A.M. Study of electrical transport properties of liquid semiconductor binary alloys using pseudopotential theory. Physics and Chemistry of Liquids. 2011. 49, No 4. P. 493-507. https://doi.org/10.1080/00319104.2010.483530.
https://doi.org/10.1080/00319104.2010.483530
9. Patel M.H., Vora A.M., Gajjar P.N. and Jani A.R. Fermi energy and Fermi surface distortion of the Cs-K, Cs-Rb and Rb-K binary systems. Physica B: Condensed Matter. 2001. 304. No 1-4. P. 152-158. https://doi.org/10.1016/S0921-4526(01)00548-8.
https://doi.org/10.1016/S0921-4526(01)00548-8
10. Asphericity in the Fermi surface and Fermi energy of Na-K, Na-Rb and Na-Cs binary alloys. Commun. Theor. Phys. 2002. 38, Issue 3. P. 365. https://doi.org/10.1088/0253-6102/38/3/365.
https://doi.org/10.1088/0253-6102/38/3/365
11. Harrison W.A. Pseudopotential in the Theory of Metals. W.A. Benjamin, Inc., New York, 1966.
12. Hubbard J. The description of collective motions in terms of many-body perturbation theory. II. The correlation energy of a free-electron gas. Proc. Roy. Soc. London A. 1958. 243. P. 336-352. https://doi.org/10.1098/rspa.1958.0003.
https://doi.org/10.1098/rspa.1958.0003
13. Sham L.J. A calculation of the phonon frequencies in sodium. Proc. Roy. Soc. London A. 1965. 283. P. 33. https://doi.org/10.1098/rspa.1965.0005.
https://doi.org/10.1098/rspa.1965.0005
14. Vashista P. and Singwi K.S. Electron correlations at metallic densities. V. Phys. Rev. B. 1972. 6. P. 875. https://doi.org/10.1103/PhysRevB.6.875.
https://doi.org/10.1103/PhysRevB.6.875
15. Taylor R. A simple, useful analytical form of the static electron gas dielectric function. J. Phys. F: Metal Phys. 1978. 8. P. 1699-1702. https://doi.org/10.1088/0305-4608/8/8/011.
https://doi.org/10.1088/0305-4608/8/8/011
16. Ichimaru S. and Utsumi K. Analytic expression for the dielectric screening function of strongly coupled electron liquids at metallic and lower densities. Phys. Rev. B. 1981. 24. P. 7385. https://doi.org/10.1103/PhysRevB.24.7385.
https://doi.org/10.1103/PhysRevB.24.7385
17. Farid B., Heine V., Engel G.E. and Robertson I.J. Extremal properties of the Harris-Foulkes func-tional and an improved screening calculation for the electron gas. Phys. Rev. B. 1993. 48. P. 11602. https://doi.org/10.1103/PhysRevB.48.11602.
https://doi.org/10.1103/PhysRevB.48.11602
18. Sarkar A., Sen D.S., Haldar S. and Roy D. Static local field factor for dielectric screening function of electron gas at metallic and lower densities. Mod. Phys. Lett. B. 1998. 12. P. 639-648. https://doi.org/10.1142/S0217984998000755.
https://doi.org/10.1142/S0217984998000755