Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 338-342 (2019).
DOI:
https://doi.org/10.15407/spqeo22.03.338
References
1. Han X., Liu K., & Sun C. Plasmonics for Bio-sensing. Materials. 2019. 12, No 9. P. 1411. https://doi.org/10.3390/ma12091411. https://doi.org/10.3390/ma12091411 | | 2. Prabowo B., Purwidyantri A., & Liu K.-C. Surface plasmon resonance optical sensor: A review on light source technology. Biosensors. 2018. 8, No 3. P. 80. https://doi.org/10.3390/bios8030080. https://doi.org/10.3390/bios8030080 | | 3. Giannini V., Fernández-Domínguez A.I., Heck S.C., & Maier S.A. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 2011. 111, No 6. P. 3888-3912. https://doi.org/10.1021/cr1002672. https://doi.org/10.1021/cr1002672 | | 4. Feichtner T., Selig O., & Hecht B. Plasmonic nanoantenna design and fabrication based on evolutionary optimization. Opt. Exp. 2017. 25, No 10. P. 10828. https://doi.org/10.1364/oe.25.010828. https://doi.org/10.1364/OE.25.010828 | | 5. Mukhtar W.M., Ayob N.R., Halim R.M. et al. Effect of noble metal thin film thicknesses on surface plasmon resonance (SPR) signal amplification. J. Adv. Res. in Mater. Sci. 2018. 49, No 1. P. 1-9. | | 6. McPeak K.M., Jayanti S.V., Kress S.J.P. et al. Plasmonic films can easily be better: Rules and recipes. ACS Photonics. 2015. 2, No 3. P. 326-333. https://doi.org/10.1021/ph5004237. https://doi.org/10.1021/ph5004237 | | 7. De Almeida J., Vasconcelos H., Jorge P., & Coelho L. Plasmonic optical fiber sensor based on double step growth of gold nano-islands. Sensors. 2018. 18, No 4. P. 1267. https://doi.org/10.3390/s18041267. https://doi.org/10.3390/s18041267 | | 8. Lee K.-S., El-Sayed M.A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B. 2006. 110, No 39. P. 19220-19225. https://doi.org/10.1021/jp062536y. https://doi.org/10.1021/jp062536y | | 9. Garoli D., Calandrini E., Giovannini G., Hubarevich, A., Caligiuri, V., & De Angelis F. Nanoporous gold metamaterials for high sensitivity plasmonic sensing. Nanoscale Horizons. 2019. https://doi.org/10.1039/c9nh00168a. https://doi.org/10.1039/C9NH00168A | | 10. Khlebtsov B., Khanadeev V., & Khlebtsov N. Tunable depolarized light scattering from gold and gold/silver nanorods. Phys. Chem. Chem. Phys. 2010. 12, No 13. P. 3210. https://doi.org/10.1039/b925102b. https://doi.org/10.1039/b925102b | | 11. Garcia-Caurel E., De Martino A., Gaston J.-P., and Yan Li. Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization. Appl. Spectrosc. 2013. 67. P. 1-21. https://doi.org/10.1366/12-06883 | | 12. Olmon R.L., Slovick B., Johnson T.W., Shelton D., Oh S.-H., Boreman G.D., & Raschke M.B. Optical dielectric function of gold. Phys. Rev. B. 2012. 86, No 23. https://doi.org/10.1103/physrevb.86.235147. https://doi.org/10.1103/PhysRevB.86.235147 | | 13. Yampolskiy A.L., Makarenko O.V., Poperenko L.V., and Lysiuk V.O. Ellipsometry of hybrid noble metal-dielectric nanostructures. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2018. 21, No 4. P. 412. https://doi.org/10.15407/spqeo21.04.412. https://doi.org/10.15407/spqeo21.04.412 | | 14. Savenkov S.N. Mueller-matrix Characterization of Biological Tissues, vol. 2. Springer, NY, 2013. | | 15. Ambirajan A., Look D.C., Jr. Optimum angles for a Mueller matrix polarimeter. Proc. SPIE. 1994. 2265, Polarization Analysis and Measurement II. https://doi.org/10.1117/12.186680 | | 16. Holoborodko A.O., Krylov A.V., Robur L.I. Diagnostics of gold surface reconstruction by methods of multi-angle ellipsometry. J. Nano- and Electron. Phys. 2015. 7, No 1. P. 01025 (6 pp.). | |
|
|