Semiconductor Physics, Quantum Electronics and Optoelectronics, 22 (3) P. 353-360 (2019).
DOI: https://doi.org/10.15407/spqeo22.03.353


References

1. Monteiro J.P., Ferreira J., Sabat R.G. et al. SPR based biosensor using surface relief grating in transmission mode. Sens. Actuators B Chem. 2012. 174. P. 270-273. https://doi.org/10.1016/j.snb.2012.08.026.
https://doi.org/10.1016/j.snb.2012.08.026
2. Stewart M.E., Anderton C.R., Thompson L.B. et al. Nanostructured plasmonic sensors. Chem. Rev. 2008. 108, No 2. P. 494-521. https://doi.org/10.1021/cr068126n.
https://doi.org/10.1021/cr068126n
3. Catchpole K.R., and Polman A. Plasmonic solar cells. Opt. Exp. 2008. 16, No 26. P. 21793-21800. https://doi.org/10.1364/OE.16.021793.
https://doi.org/10.1364/OE.16.021793
4. Paivanranta B., Baroni P., Scharf T., Nakagawa W., Kuittinen M., Herzig H.P. Antireflective nanostruc-tured microlenses. Microelectron. Eng. 2008. 5. P. 1089-1091. https://doi.org/10.1016/j.mee.2008.01.011.
https://doi.org/10.1016/j.mee.2008.01.011
5. Bi Y.G., Feng J., Liu Y.S., Li Y.F., Chen Y., Zhang X.L., Han X.C., and Sun H.B. Surface plasmon polariton mediated red emission from organic light-emitting devices based on metallic electrodes integrated with dual-periodic corrugation. Sci. Rep. 2014. 4. P. 7108. https://doi.org/10.1038/srep07108.
https://doi.org/10.1038/srep07108
6. Sosnova M.V., Dmitruk N.L., Korovin A.V., Mamykin S.V. Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications. Appl. Phys. B: Lasers and Optics, Springer. 2010. 99. P. 493-497. https://doi.org/10.1007/s00340-007-2760-1.
https://doi.org/10.1007/s00340-007-2760-1
7. Farhang A., Siegfried T., Ekinci Ya., Sigg H., Martin O.J.F. Large-scale sub-100 nm compound plasmonic grating arrays to control the interaction between localized and propagating plasmons. J. Nanophotonics. 2014. 8. P. 083897-1-083897-9. https://doi.org/10.1117/1.JNP.8.083897.
https://doi.org/10.1117/1.JNP.8.083897
8. Murray W.A., Astilean S., and Barnes W.L. Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array. Phys. Rev. B. 2004. 69. P. 165407-1-7. https://doi.org/10.1103/PhysRevB.69.165407.
https://doi.org/10.1103/PhysRevB.69.165407
9. Dan'ko V., Dmitruk M., Indutnyi I. et al. Fabrication of periodic plasmonic structures using interference lithography and chalcogenide photoresist. Nanoscale Res. Lett. 2015. 10. P. 497. https://doi.org/10.1186/s11671-015-1203-x.
https://doi.org/10.1186/s11671-015-1203-x
10. Dan'ko V., Dmitruk M., Indutnyi I., Mamykin S., Myn'ko V., Shepeliavyi P., Lukaniuk M., and Lytvyn P. Au gratings fabricated by interference lithography for experimental study of localized and propagating surface plasmons. Nanoscale Res. Lett. 2017. 12. P. 190. https://doi.org/10.1186/s11671-017-1965-4.
https://doi.org/10.1186/s11671-017-1965-4
11. Worthing P.T., and Barnes W.L. Coupling efficiency of surface plasmon polaritons to radiation using a corrugated surface; angular dependence. Journal of Modern Optics. 2002. 49. P. 1453-1462. https://doi.org/10.1080/09500340110105911.
https://doi.org/10.1080/09500340110105911
12. Ruffato G., Pasqualotto E., Sonato A., Zacco G., Silvestri D., Morpurgo M., De Toni A., Romanato F. Implementation and testing of a compact and high-resolution sensing device based on grating-coupled surface plasmon resonance with polarization modulation. Sensors and Actuators B. 2013. 185. P. 179-187. https://doi.org/10.1016/j.snb.2013.04.113.
https://doi.org/10.1016/j.snb.2013.04.113
13. Romanato F., Lee K.H., Kang H.K. et al. Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons. Phys. Rev. B. 2008. 77. P. 245435-245441. https://doi.org/10.1103/Phys Rev B. 77.245435.
https://doi.org/10.1103/PhysRevB.77.245435
14. Romanato F., Lee K.H., Kang H.K., Ruffato G., Wong C.C. Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control. Opt. Exp. 2009. 17. P. 12145-12154. https://doi.org/10.1364/OE.19.013164.
https://doi.org/10.1364/OE.19.013164
15. Indutnyi I., Ushenin Yu., Hegemann D., Vandenbossche M., Myn'ko V., Lukaniuk M., Shepeliavyi P., Korchovyi A., and Khrystosenko R. Enhancing surface plasmon resonance detection using nanostructured Au chips. Nanoscale Res. Lett. 2016. 11. P. 535. https://doi.org/10.1186/s11671-016-1760-7.
https://doi.org/10.1186/s11671-016-1760-7
16. Dan'ko V.A., Dorozinsky G.V., Indutnyi I.Z. et al. Nanopatterning Au chips for SPR refractometer by using interference lithography and chalcogenide photoresist. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2015. 18. P. 438-442. https://doi.org/10.15407/spqeo18.04.438.
https://doi.org/10.15407/spqeo18.04.438
17. Demichelis F., Kaniadakis G., Tagliaffero A., Tresso E. New approach to optical analysis of absorbing thin solid films. Appl Opt. 1987. 26. P. 1737-1740. https://doi.org/10.1364/AO.26.001737.
https://doi.org/10.1364/AO.26.001737
18. Dmitruk N.L., Litovchenko V.G., Strygewskyy V.L. Surface Polaritons in Semiconductors and Dielectrics. Kyiv, Naukova Dumka, 1989 (in Russian).
19. Hibbins A.P., Sambles J.R. and Lawrence C.R. Azimuth-angle-dependent reflectivity data from metallic gratings. Journal of Modern Optics. 1998. 45. P. 1019-1028. https://doi.org/10.1080/09500349808230894
https://doi.org/10.1080/09500349808230894
20. Johnson P.B. and Christy R.W. Optical constants of the noble metals. Phys. Rev. B. 1972. 6. P. 4370-4379. https://doi.org/10.1103/PhysRevB.6.4370.
https://doi.org/10.1103/PhysRevB.6.4370