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Abstract. In this paper, we account the electrical transport properties of Bi-Ga alloys 

studied theoretically by employing our well-known model pseudopotential. The impact of 

various screening functions was studied using various exchange and correlation functions 

in the aforesaid investigation. The obtained results on electrical resistivity are found to be 

in qualitative agreement with the experimental data in available literature. 
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1. Introduction 

The semiconductor device technology is extensively used 

in computers, computational control systems, medical 

instruments, automobiles and household appliances, 

telephones etc. An appropriate consideration of the 

electronic transport properties of metals and their alloys 

is only conceivable when electrons are designated using 

quantum-mechanical approach. The properties of 

electronic materials and interfaces between electronic 

materials are used to elucidate behavior of a variety of 

semiconductor devices, namely: solid-state lasers, light 

emitting diodes, bipolar transistors, sensors and field 

effect transistors etc. Therefore, to understand the 

electronic structure of the semiconductor materials, the 

electronic transport properties play an important role and 

show fascinating interest for research community [1-8]. 

The electronic transport properties of liquids can be 

extensively described by the simple model suggested  

by Faber and Ziman (FZ) [4]. They have computed  

the electrical resistivity of liquid metals using 

pseudopotentials and interference functions. Here,  

we report the electrical transport properties of liquid  

Bi-Ga alloys using this FZ model [4] with our well-

recognized model potential [9]. The different exchange 

and correlation functions proposed by Hartree (H) [10], 

Hubbard–Sham (HS) [11, 12], Vashistha–Singwi (VS) 

[13], Taylor (T) [14], Ichimaru–Utsumi (IU) [15], Farid 

et al. (F) [16] and Sarkar et al. (S) [17] are used to 

describe the screening influences on the aforesaid 

properties. 

2. Theoretical basis 

The FZ model is used for calculating the electrical 

resistivity of Bi-Ga alloy [1-8], 
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Here, V11(q) and V22(q) represent form-factors of our 

model pseudopotential [9] for two metallic substances A 

and B, while Sij are the partial structure factors [3] with X 

being the concentration of the second metallic substance. 

The notation of the thermoelectric power (TEP) is 

narrated as [1-8]: 
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The thermal conductivity is calculated using the 

following expression [1-8] 
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Here, e, EF, T and kB are the electronic charge, Fermi 

energy, temperature and the Boltzmann constant, 

respectively. Our well-known model pseudopotential [9] 

applied in the present computation is of the form: 

 

 
 
Fig. 1. Electrical resistivity (ρ) of Bi-Ga alloys. 

 

 
 

Fig. 2. Thermoelectric power of Bi-Ga alloys. 

 
 

Fig. 3. Thermal conductivity (σ) of Bi-Ga alloys. 
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The details of such model pseudopotential have been 

discussed in our earlier paper [9]. Here, rC is the model 

potential parameter. 

 

3. Results and discussion 

The input data and other constants used in the said work 

are shown in Table. While, calculated outcomes of the 

electrical transport properties inherent to Bi-Ga alloys are 

presented in Figs. 1 to 3 with experimental data [5] 

available in literature. 

The electrical resistivity (ρ) at different 

concentrations is displayed in Fig. 1 alongwith the 

experimental results [5]. It is observed that the present 

yielding obtained from the T-function is shown above in 

comparison with other screening functions. The relative 

impact of all the exchange and correlation functions with 

respect to H-function on the electrical resistivity (ρ) 

results is found within the range of 7.83% to 53.54%. 

 
The input parameters and constants. 
 

Metal Z Ω0 (a.u.) η rC (a.u.) 

Bi 5 239.4 0.40 1.9644 

Ga 3 131.4 0.43 1.6084 

(W
/K

⋅⋅ ⋅⋅ c
m
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However, the theoretical outcomes are shown to be in 

qualitative agreement with existing experimental yielding 

[5], and our data are not showing any kind of parabolic 

nature in the present results because of some limitations 

for fitting the potential parameter. The presently obtained 

thermoelectric power (TEP) is displayed in Fig. 2. It is 

noted that the H-function provides the extreme numerical 

value of TEP, while those due to T-function provides the 

smallest value as compared with the other screening 

functions. Also, currently obtained data of the thermal 

conductivity (σ) is seen in Fig. 3. It can be seen that the 

present yielding of it computed through H-function 

shows higher fallouts in comparison with other screening 

functions, while T-function produces lower outcomes. In 

absence of either theoretical or experimental data of TEP 

and thermal conductivity (σ), such calculated data may 

be considered as one of the proper choices for further 

examination or study. The enhancement in the current 

results may be reached either by including other types of 

the exchange and correlation functions or by signifying 

alteration in shaping the model pseudopotential 

parameter.  

 

4. Conclusion 

The present effort of obtaining the electrical transport 

properties of Bi-Ga alloys not only confirms the 

importance of the pseudopotential theory but also 

establishes the appropriate choice of more promising 

exchange and correlation functions, too. At the same 

time, the currently calculated outcomes of the electrical 

resistivity are observed in qualitative agree with existing 

experimental data. 
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