Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (3) P. 227-252 (2020).
References
1. Colinge J.-P. Silicon-on-insulator MOS devices for integrated circuit applications. Hewlett-Packard Journal. 1988. 39, No 1. P. 87-93. | | 2. Colinge J.-P. Silicon-on-Insulator Technology: Materials to VLSI. 3rd ed. Kluwer Academic Publishers. 2004. https://doi.org/10.1007/978-1-4419-9106-5 | | 3. Cristoloveanu S. and Li S. Electrical Characterization of Silicon-on-Insulator Materials and Devices. Kluwer, Boston. 1995. https://doi.org/10.1007/978-1-4615-2245-4 | | 4. Celler G. K., Cristoloveanu S. Frontiers of silicon-on-insulator. J. Appl. Phys. 2003. 93, No 9. P. 4955-4978. https://doi.org/10.1063/1.1558223 | | 5. Fleetwood D.M., Thome F.V., Tsao S.S. et al. High temperature Silicon-on-Insulator electronics for space nuclear power: requirements and feasibility. IEEE Trans. Nuclear Sci. 1988. 35, No 5. P. 1099-1112. https://doi.org/10.1109/23.7506 | | 6. Francis P., Terao A., Gentinne B., Flandre D., and Colinge J.-P. SOI technology for high-temperature applications. IEDM Techn. Digest. 1992. P. 353-356. https://doi.org/10.1109/IEDM.1992.307590 | | 7. Flandre D. Silicon-on-insulator technology for high temperature metal oxide semiconductor devices and circuits. Mater. Sci. Eng. 1995. 29, No 1-3. P. 7-12. https://doi.org/10.1016/0921-5107(94)04018-Y | | 8. Colinge J.-P. SOI for hostile environment appli-cations. Proc. IEEE Intern. SOI Conf. 2004. P. 1-4. | | 9. Taur Y., Buchanan D.A., Chen W. et al. CMOS scaling into the nanometer regime. Proc. IEEE. 1997. 85, No 4. P. 486-504. https://doi.org/10.1109/5.573737 | | 10. Choi Y.K., Asano K., Lindert N. et al. Ultrathin-body SOI MOSFET for deep-sub-tenth micron era. IEEE Electron Dev. Lett. 2000. 21, No 5. P. 254-255. https://doi.org/10.1109/55.841313 | | 11. Hisamoto D., Lee W.-C., Kedzierski J. et al. FinFET - A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Dev. 2000. 47, No 12. P. 2320-2325. https://doi.org/10.1109/16.887014 | | 12. International Technology Roadmap for Semiconductors (ITRS), 2001 Edition. Emerging Research Devices. P. 29-40. | | 13. Frank D.J., Dennard R.H., Nowak E. et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE. 2001. 89, No 3. P. 259-288. https://doi.org/10.1109/5.915374 | | 14. Wong H.-S.P. Beyond the conventional transistor. IBM J. Res. & Develop. 2002. 46, No 2/3. P. 133-168. https://doi.org/10.1147/rd.462.0133 | | 15. Chang L., Choi Y.-K., Ha D. et al. Extremely scaled silicon nano-CMOS devices. Proc. IEEE. 2003. 91, No 11. P. 1860-1873. https://doi.org/10.1109/JPROC.2003.818336 | | 16. Park J.-T., Colinge J.-P. Multi-gate SOI MOSFETs: Device design guidelines. IEEE Trans. Electron Dev. 2002. 49, No 12. P. 2222-2229. https://doi.org/10.1109/TED.2002.805634 | | 17. Yu B., Chang L., Ahmed S. et al. FinFET scaling to 10 nm gate length. IEDM Techn. Dig. 2002. P. 251-254. | | 18. Colinge J.-P. (Ed.). FinFETs and other Multi-Gate Transistors. Springer, 2007. https://doi.org/10.1007/978-0-387-71752-4 | | 19. Baba S. Next generation low-power consumption SOI devices. OKI Techn. Rev. 2002. Issue 190. 69, No 2. P. 40-45. | | 20. Pelloie J.L. Using SOI to achieve low-power consumption in digital. Proc. IEEE Intern. SOI Conf. 2005. P. 1-4. | | 21. Uchiyama A., Baba S., Nagatomo Y., Ida J. Fully depleted SOI technology for ultra low power digital and RF applications. Proc. IEEE Intern. SOI Conf. 2006. P. 15-16. https://doi.org/10.1109/SOI.2006.284409 | | 22. Sakurai T., Matsuzawa A., Douseki T. Fully-depleted SOI CMOS Circuits and Technology for Ultralow-power Applications. New Jersey: Springer. 2006. | | 23. Celler G.K. SOI Technology Driving The 21st Century Ubiquitous Electronics. ECS Transactions. 2009. 19, No 4. P. 3-14. https://doi.org/10.1149/1.3117387 | | 24. Nguyen B.-Y., Celler G., Mazuré C. A review of SOI technology and its applications. IBM J. Res. & Develop. 2009. 4, No 2. P. 51-54. | | 25. Curran B., Fluhr E., Paredes J. et al. Power-constrained high-frequency circuits for the IBM POWER6 microprocessor. IBM J. Res. & Develop. 2007. 51, No. 6. P. 715-731. https://doi.org/10.1147/rd.516.0715 | | 26. Sellier M. FD-SOI: A technology setting new standards for IoT, automotive and mobile connectivity applications. April 10, 2019. | | 27. Global Silicon-on-Insulator (SOI) Market 2020 Recent Study including Growth Factors, Applications, Regional Analysis, Key Players and Forecasts 2024. | | 28. Guan L., Sin J.K.O., Liu H., Xiong Z. A fully integrated SOI RF MEMS technology for system-on-a-chip applications. IEEE Trans. Electron Dev. 2006. 53, No 1. P. 167-172. https://doi.org/10.1109/TED.2005.860638 | | 29. Mokwa W. Advanced sensors and microsystems on SOI. Intern. Journal of High Speed Electronics and Systems. 2000. 10, No 1. P. 147-153. https://doi.org/10.1142/S0129156400000180 | | 30. Raskin J.-P., Francis L., Flandre D. Sensing and MEMS devices in thin-film SOI MOS technology. In: Semiconductor-on-Insulator Materials for Nanoelectronics Applications. Eds: A.N. Nazarov, J.-P. Colinge, F. Balestra, J.-P. Raskin, F. Gamiz, V.S. Lysenko. Springer. 2011. P. 355-392. https://doi.org/10.1007/978-3-642-15868-1_20 | | 31. Cui Y., Wei Q., Park H., Lieber C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 2001. 293, Issue 5533. P. 1289-1292. https://doi.org/10.1126/science.1062711 | | 32. Kawamura S., Sasaki N., Iwai T. et al. 3-dimen-sional SOI/CMOS IC's fabricated by beam recrys-tallization. IEDM Techn. Digest. 1983. P. 364-367. https://doi.org/10.1109/IEDM.1983.190517 | | 33. Zhang R., Roy K., Janes D.B. Architecture and performance of 3-dimensional SOI circuits. Proc. 1999 IEEE Intern. SOI Conf. P. 44-45. | | 34. Okhonin S., Nagoga M., Sallese J.M., and Fazan P. A capacitor-less 1T-DRAM cell. IEEE Electron Dev. Lett. 2002. 23, No 2. P. 85-87. https://doi.org/10.1109/55.981314 | | 35. Bawedin M., Cristoloveanu S., Flandre D. Innovating SOI memory devices based on floating-body effects. Solid-State Electronics. 2007. 51, No 7. P. 1252-1262. https://doi.org/10.1016/j.sse.2007.06.024 | | 36. Colinge J.-P., Baie X., Bayot V., Grivei E. A silicon-on-insulator quantum wire. Solid-State Electron. 1996. 39, No 1. P. 49-51. https://doi.org/10.1016/0038-1101(95)00094-A | | 37. Zhang L., Guo L., Chou S.Y. Silicon single-electron quantum-dot transistor switch operating at room temperature. Appl. Phys. Lett. 1998. 72. P. 1205-1207. https://doi.org/10.1063/1.121014 | | 38. Ono Y., Yamazaki K., Nagase M. et al. Single-electron and quantum SOI devices. Microelectron. Eng. 2001. 59, Issues 1-4. P. 435-444. https://doi.org/10.1016/S0167-9317(01)00638-4 | | 39. Sze S.M. VLSI Technology. New York, McGraw-Hill, 1983. | | 40. Muller R.S., Kamins T.I. Device Electronics for Integrated Circuits. 2nd ed. John Wiley and Sons, Inc., New York, 1986. | | 41. Troutman R.R. Latchup in CMOS Technology: The Problem and its Cure. Kluwer Academ. Publ., 1986. https://doi.org/10.1007/978-1-4757-1887-4 | | 42. Morris W. Latchup in CMOS. In: 2003 IEEE Intern. Reliability Phys. Symposium Proc. 2003. | | 43. Musseau O. Single-event effects in SOI technologies and devices. IEEE Trans. Nuclear Sci. 1996. 43, No 2. P. 603-613. https://doi.org/10.1109/23.490904 | | 44. Schwank J.R., Ferlet-Cavroiz V., Shaneyfelt M.R. et al. Radiation effects in SOI technologies. IEEE Trans. Nuclear Sci. 2003. 50, No 3. P. 522-538. https://doi.org/10.1109/TNS.2003.812930 | | 45. Tsaur B.-Y., Fan J.C.C., Turner G.W., Silversmith D.J. Effects of ionizing radiation on n-channel MOSFETs fabricated in zone-melting recrystallized Si films on SiO2. IEEE Electron Dev. Lett. 1982. 3, No 7. P. 195-197. https://doi.org/10.1109/EDL.1982.25535 | | 46. Davis G.E., Hughes H.L., Kamins T.I. Total dose radiation-bias effects in laser-recrystallized SOI MOSFET's. IEEE Trans. Nuclear Sci. 1983. 29, No 6. P. 1685-1689. https://doi.org/10.1109/TNS.1982.4336429 | | 47. Tsaur B.-Y., Mountain R.W., Chen C.K. et al. Effects of ionizing radiation on SOI/CMOS devices fabricated in zone-melting-recrystallized Si films on SiO2. IEEE Electron Dev. Lett. 1984. 5, No 7. P. 238-240. https://doi.org/10.1109/EDL.1984.25902 | | 48. Barchuk I.P., Kilchitskaya V.I., Lysenko V.S. et al. Electrical properties and radiation hardness of SOI systems with multilayer buried dielectric. IEEE Trans. Nuclear Sci. 1997. 44, No 6. P. 2542-2552. https://doi.org/10.1109/23.650861 | | 49. Rudenko A.N., Lysenko V.S., Nazarov A.N. et al. Total-dose radiation response of multilayer buried insulators. In: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices, ed. by Peter L.F. Hemment, V.S. Lysenko and A.N. Nazarov. NATO Science Series 3. High Technology. Springer. 2000. 73. P. 205-212. https://doi.org/10.1007/978-94-011-4261-8_19 | | 50. Hu C. Silicon-on-insulator for high speed ultra large scale integration. Jpn. J. Appl. Phys. 1994. 33, No 1. P. 365-369. https://doi.org/10.1143/JJAP.33.365 | | 51. Flandre D., Raskin J.-P., Vanhoenacker D. SOI CMOS transistors for RF and microwave appli-cations. Intern. Journal of High Speed Electronics and Systems. 2001. 11, No 4. P. 1159-1248. https://doi.org/10.1142/S0129156401001076 | | 52. Lederer D., Desrumeaux C., Brunier F., Raskin J.-P. High resistivity SOI substrates: how high should we go? In: Proc. IEEE Int. SOI Conf. 2003. P. 50-51. https://doi.org/10.1109/SOI.2003.1242893 | | 53. Esfeh B. Kazemi, Makovejev S., Basso Didier et al. SOI CMOS technology on 1st and 2nd generation trap-rich high resistivity SOI wafers. Solid-State Electron. 2017. 128. P. 121-128. https://doi.org/10.1016/j.sse.2016.10.035 | | 54. Colinge J.-P. Subthreshold slope of thin-film SOI MOSFETs. IEEE Electron Dev. Lett. 1986. 7, No 4. P.244-246. https://doi.org/10.1109/EDL.1986.26359 | | 55. Wouters D.J., Colinge J.-P., and Maes H.E. Subthreshold slope in thin-film SOI MOSFETs. IEEE Trans. Electron Dev. 1990. 37, No 9. P. 2022-2033. https://doi.org/10.1109/16.57165 | | 56. Flandre D., Colinge J.-P., Chen J. et al. Fully depleted SOI CMOS technology for low-voltage low-power mixed digital/analog/microwave circuits. In: Analog Integrated Circuits and Signal Processing. Kluwer Academic Publ., Boston. 1999. 21, No 3. P. 213-228. | | 57. Flandre D., Terao A., Francis P., Gentinne B., Colinge J.-P. Demonstration of the potential of accumulation-mode MOS transistors on SOI substrates for high-temperature operation (150-300°C). IEEE Electron Dev. Lett. 1993. 14, No 1. P. 10-12. https://doi.org/10.1109/55.215084 | | 58. Colinge J.-P. SOI CMOS for high-temperature applications. In: Perspectives, Science and Techno-logies for Novel Silicon on Insulator Devices, ed. by Peter L.F. Hemment, V.S. Lysenko and A.N. Naza-rov. NATO Science Series 3. High Technology. Kluwer Academic Publ. 2000. 73. P. 249-256. https://doi.org/10.1007/978-94-011-4261-8_24 | | 59. Sze S. Physics of Semiconductor Devices. 2nd ed. John Wiley & Sons, Inc., New York. 1981. | | 60. Groeseneken G., Colinge J.-P., Maes H.E., Alderman J.C., Holt S. Temperature dependence of threshold voltage in thin-film SOI MOSFETs. IEEE Electron Device Lett. 1990. 11, No 8. P. 329-331. https://doi.org/10.1109/55.57923 | | 61. Plöbl A., Kräuter G. Silicon-on-insulator: materials aspects and applications. Solid-State Electronics. 2000. 44, No 5. P. 775-782. https://doi.org/10.1016/S0038-1101(99)00273-7 | | 62. Manasevit H.M., Simpson W.I. Single-crystal silicon on a sapphire substrate. J. Appl. Phys. 1964. 35, No 4. P. 1349-1351. https://doi.org/10.1063/1.1713618 | | 63. Mueller C.W., Robinson P.H. Grown-film silicon transistors on sapphire. Proc. IEEE. 1964. 52, No 12. P. 1487-1490. https://doi.org/10.1109/PROC.1964.3436 | | 64. Ipri A.C. Electrical properties of silicon films on sapphire using the MOS Hall technique. J. Appl. Phys. 1972. 43, No 6. P. 2770-2775. https://doi.org/10.1063/1.1661592 | | 65. Lau S.S., Matteson S., Mayer J.W. et al. Improvement of crystalline quality of epitaxial Si layers by ion-implantation techniques. Appl. Phys. Lett. 1979. 34, No 1. P. 76-78. https://doi.org/10.1063/1.90564 | | 66. Amano J., Carey K.A. A novel three-step process for low-defect-density silicon on sapphire. Appl. Phys. Lett. 1981. 39, No 2. P. 163-165. https://doi.org/10.1063/1.92648 | | 67. Yoshii T., Taguchi S., Inoue T., and Tengo H. Improvement of SOS device performance by solid-phase epitaxy. Jpn. J. Appl. Phys. 1982. 21. Suppl. 21-1. P. 175-176. https://doi.org/10.7567/JJAPS.21S1.175 | | 68. Johnson R.A., de la Houssey P.R., Chang C.E. et al. Advanced thin-film silicon-on-sapphire technology: microwave circuit applications. IEEE Trans. Electron Dev. 1998. 45, No 5. P. 1047-1054. https://doi.org/10.1109/16.669525 | | 69. Nakamura T., Matsuhashi H., Nagatomo Y. Silicon on sapphire (SOS) device technology. Oki Techn. Rev. 2004. Issue 200. 71, No 4. P. 66-69. | | 70. Kelly D., Brindle C., Kemerling C., Stuber M. The state-of-the-art of silicon-on-sapphire CMOS RF switches. IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC'05. https://doi.org/10.1109/CSICS.2005.1531812 | | 71. Tsaur B.-Y. Zone-melting-recrystallization silicon-on-insulator technology. IEEE Circuits and Dev. Mag. 1987. 3, No 4. P. 12-16. https://doi.org/10.1109/MCD.1987.6323127 | | 72. Rensch D.B., Chen J.Y. Silicon film recrys-tallization using e-beam line source. Micro-electronics Journal. 1983. 14, No 6. P. 66-73. https://doi.org/10.1016/S0026-2692(83)80086-X | | 73. Geis M.W., Smith H.I., Tsaur B.-Y., Fan J.C.C. Zone-melting recrystallization of encapsulated silicon films on SiO2 - morphology and crystallo-graphy. Appl. Phys. Lett. 1982. 40, No 2. P. 158-160. https://doi.org/10.1063/1.93021 | | 74. Fan J.C.C., Tsaur B.-Y., Geis M.W. Graphite-strip-heater zone-melting recrystallization of Si films. J. Cryst. Growth. 1983. 63, No 3. P. 453-483. https://doi.org/10.1016/0022-0248(83)90162-8 | | 75. Vu D.P., Benzahel D., Dupuy M. Halogen lamp recrystallization of silicon on insulting substrates. J. Appl. Phys. 1983. 54, No 1. P. 437-439. https://doi.org/10.1063/1.331677 | | 76. Tillack B., Mock P., Banisch R. et al. Thick monocrystalline silicon on oxidized silicon wafers produced by a zone-melting process using a scanning halogen lamp. phys. status solidi (a). 1986. 94, No 2. P. 871-876. https://doi.org/10.1002/pssa.2210940258 | | 77. Celler G.K., Trimple L.E. Ng K.K., Leamy H.J., Baumgart H. Seeded oscillatory growth of Si over SiO2 by CW laser irradiation. Appl. Phys. Lett. 1982. 40, No 12. P. 1043-1045. https://doi.org/10.1063/1.92998 | | 78. Limanov A.B., Givargizov E.I. Control of structure of zone-melting silicon films on amorphous substrates. Mater. Lett. 1983. 2, No 2. P. 93-96. https://doi.org/10.1016/0167-577X(83)90044-7 | | 79. Limanov A.B., Givargizov E.I. Laser zone-melting recrystallization of thin silicon films: method, struc-ture, crystallization mechanisms. Mikroelektronika. 1991. 20, No 4. P. 36-49 (in Russian). | | 80. Givargizov E.I., Loukin V.A., Limanov A.B. Defect engineering in SOI films prepared by zone-melting recrystallization. In book: Physical and Technical Problems of SOI Structures and Devices, Eds: J.-P. Colinge, V.S. Lysenko and A.N. Nazarov, NATO ASI Series 3. Springer, Dordrecht, 1995. 4. P. 27-38. https://doi.org/10.1007/978-94-011-0109-7_3 | | 81. Rudenko T.E., Rudenko A.N., Lysenko V.S., Limanov A.B., Givargizov E.I. Characteristics of CMOS IC elements based on SOI and SOS structures. Elektronnaya promyshlennost'. 1991. №8. P. 36-41 (in Russian). | | 82. Rudenko T.E., Rudenko A.N., Lysenko V.S. Electrical properties of ZMR SOI structures: Characterization techniques and experimental results. In: Physical and Technical Problems of SOI Structures and Devices. Eds: J.-P. Colinge, V.S. Lysenko and A.N. Nazarov. NATO ASI Series 3. Springer, Dordrecht, 1995. 4. P. 169-180. https://doi.org/10.1007/978-94-011-0109-7_16 | | 83. Izumi K., Doken M., Ariyoshi H. C.M.O.S devices fabricated on buried SiO2 layers formed by oxygen implantation into silicon. Electron. Lett. 1978. 14. P. 593-594. https://doi.org/10.1049/el:19780397 | | 84. Izumi K., Omura Y., Sakai T. SIMOX technology and its application to CMOS LSI. J. Electron. Mater. 1983. 12, No 5. P. 845-861. https://doi.org/10.1007/BF02655298 | | 85. Lam H.W. SIMOX SOI for integrated circuit fabrication. IEEE Circuits and Dev. Mag. 1987. 3, No 4. P. 6-11. https://doi.org/10.1109/MCD.1987.6323126 | | 86. Hemment P.L.F. Silicon on insulator formed by O+ or N+ ion implantation. Proc. Material Research Society Symp. 1986. 53. P. 207-221. https://doi.org/10.1557/PROC-53-207 | | 87. Nakashima S., Izumi K. Analysis of buried oxide layer formation and mechanism of threading dis-location generation in the substoichiometric oxygen dose region. J. Mater. Res. 1993. 8, No 3. P. 523-534. https://doi.org/10.1557/JMR.1993.0523 | | 88. Matsumura A., Kawamura K., Hamaguchi I. et al. Low-dose SIMOX wafers for LSIs fabricated with internal-thermal-oxidation (ITOX) process: electrical characterization. J. Mater. Sci.: Materials in Electronics. 1999. 10, No 5. P. 365-371. | | 89. Lasky J.B. Wafer bonding for silicon-on-insulator technologies. Appl. Phys. Lett. 1986. 48, No 1. P. 78-80. https://doi.org/10.1063/1.96768 | | 90. Maszara W.P., Goetz G., Caviglia A., McKitterick J.B. Bonding of silicon wafers for silicon-on-insulator. J. Appl. Phys. 1988. 64, No 10. P. 4943-4950. https://doi.org/10.1063/1.342443 | | 91. Tong Q.-Y. and Gösele U. Semiconductor Wafer Bonding: Science and Technology. John Wiley & Sons, New York, 1999. | | 92. Bruel M. Silicon on insulator material technology. Electron. Lett. 1995. 31, No 14. P. 1201-1202. https://doi.org/10.1049/el:19950805 | | 93. Bruel M. The history, physics, and applications of the Smart-Cut™ process. MRS Bulletin. 1998. 23, No 12. P. 35-39. https://doi.org/10.1557/S088376940002981X | | 94. Auberton-Herve A.-J., Bruel M., Aspar B. et al Smart-Cut™: The basic fabrication process for UNIBOND™ SOI wafers. IEICE Trans. Electronics. 1997. E80-C, No 3. P. 358-363. https://doi.org/10.1557/PROC-446-177 | | 95. Bruel M. Smart-Cut® Technology: Basic mechanisms and applications. In: Perspectives, Science and Technologies for Novel Silicon on Insulator Devices, Eds. Peter L.F. Hemment, V.S. Lysenko and A.N. Nazarov, NATO Science Series 3. High Technology. Springer, Dordrecht, 2000. 73. P. 1-15. https://doi.org/10.1007/978-94-011-4261-8_1 | | 96. Maleville C., Mazuré C. Smart-Cut® technology: from 300 mm ultrathin SOI production to advanced engineered substrates. Solid-State Electronics. 2004. 48, No 6. P. 1055-1063. https://doi.org/10.1016/j.sse.2003.12.029 | | 97. Joly J.-P., Aspar B., Bruel M. et al. New SiC on insulator wafers based on the Smart-Cut™ approach and their potential applications. In: Progress in SOI Structures and Devices Operating at Extreme Con-ditions. Eds: F. Balestra, A.N. Nazarov, V.S. Lysen-ko. NATO Science Series II. Mathematics, Physics and Chemistry. Vol. 58. Kluwer Academic Publ., 2002. P. 31-38. https://doi.org/10.1007/978-94-010-0339-1_4 | | 98. Cioccio Di L., Jalaguier E., Letertre F.E. Compound Semiconductor Heterostructures by Smart Cut™: SiC on Insulator, QUASIC™ Substrates, InP and GaAs Heterostructures on Silicon. Springer Series in Materials Science. 2004. 75. P. 263-314. https://doi.org/10.1007/978-3-662-10827-7_7 | | 99. Akatsu T., Deguet C., Sanchez L. et al. 200-mm germanium-on-insulator (GeOI) by Smart Cut™ technology and recent GeOI pMOSFETs achievements. Proc. 2005 IEEE Int. SOI Conf. 2005. P. 137-138. | | 100. Yonehara T., Sakaguchi K., Sato N. Epitaxial layer transfer by bond and etch back of porous Si. Appl. Phys. Lett. 1994. 64, Issue 16. P. 2108-2110. https://doi.org/10.1063/1.111698 | | 101. Brews J.R., Fichtner W., Nicollian E.H., Sze S.M. Generalized guide for MOSFET miniaturization. IEEE Electron Dev. Lett. 1980. 1, No 1. P. 2-4. https://doi.org/10.1109/EDL.1980.25205 | | 102. Troutman R.R. VLSI limitations from drain-induced barrier lowering. IEEE Trans. Electron Dev. 1979. 26, No 4. P. 461-469. https://doi.org/10.1109/T-ED.1979.19449 | | 103. Dennard R.H., Gaensslen F.H., Yu H.-N. et al. Design of ion-implanted MOSFET's with very small physical dimensions. IEEE J. Solid-State Circuits. 1974. 9, No 5. P. 256-268. https://doi.org/10.1109/JSSC.1974.1050511 | | 104. Baccarani G., Wordeman M.R., Dennard R.H. Generalized scaling theory and its application to a 0.25 m MOSFET design. IEEE Trans. Electron Dev. 1984. 31, No 4. P. 452-462. https://doi.org/10.1109/T-ED.1984.21550 | | 105. Fenouillet-Beranger C., Skotnicki T., Monfray S. et al. Requirements for ultra-thin-film devices and new materials for the CMOS roadmap. Solid-State Electronics. 2004. 48, No 6. P. 961-967. https://doi.org/10.1016/j.sse.2003.12.039 | | 106. Kuhn K.J. Considerations for ultimate CMOS scaling. IEEE Trans. Electron Dev. 2012. 59, No 7. P. 1813-1828. https://doi.org/10.1109/TED.2012.2193129 | | 107. Wilk G.D., Wallace R.M., Anthony J.M. High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001. 89, No 10. P. 5243-5275. https://doi.org/10.1063/1.1361065 | | 108. Gusev E., Buchanan D., Cartier E. et al. Ultrathin high-k gate stacks for advanced CMOS devices. IEDM Techn. Digest. 2001. P. 451-454. | | 109. Lee B.H., Kang L., Qi W.-J. et al. Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application. IEDM Techn. Digest. 1999. P. 133-136. | | 110. Lee J.C., Cho H.J., Kang C.S. et al. High-k dielectrics and MOSFET characteristics. IEDM Techn. Digest. 2003. P. 95-98. | | 111. Chau R., Datta S., Doczy M. et al. High-k/metal-gate stack and its MOSFET characteristics. IEEE Electron Dev. Lett. 2004. 25, No 6. P. 408-410. https://doi.org/10.1109/LED.2004.828570 | | 112. Suzuki S., Ishii K., Kanemaru S. et al. Highly suppressed short-channel effects in ultrathin SOI n-MOSFETs. IEEE Trans. Electron Dev. 2000. 47, No 2. P. 354-359. https://doi.org/10.1109/16.822280 | | 113. Wong H.-S., Frank D., Solomon P. Device design considerations for double-gate, ground-plane, and single-gate ultra-thin SOI MOSFETs at the 25 nm channel length. IEDM Techn. Digest. 1998. P. 407-410. | | 114. Park J.T., Colinge J.-P., Diaz C.H. Pi-gate SOI MOSFET. IEEE Electron Dev. Lett. 2001. 22, No 8. P. 405-407. https://doi.org/10.1109/55.936358 | | 115. Yang F.-L., Chen H.-Y et al. 25 nm CMOS omega FETs. IEDM Techn. Digest. 2002. P. 255-258. | | 116. Colinge J.-P. Multiple-gate SOI MOSFETs. Solid-State Electronics. 2004. 48, No 6. P. 897-905. https://doi.org/10.1016/j.sse.2003.12.020 | | 117. Eminente S., Cristoloveanu S., Clerc R., Ohata A., Ghibaudo G. Ultra-thin fully-depleted SOI MOSFETs: Special charge properties and coupling effects. Solid-State Electronics. 2007. 51. P. 239-244. https://doi.org/10.1016/j.sse.2007.01.016 | | 118. Tsuchiya R., Horiuchi M., Kimura S. et al. Silicon on thin BOX: A new paradigm of the MOSFET for low-power and high-performance applications featuring wide-range back-bias control. IEDM Techn. Digest. 2004. P. 631-634. | | 119. Sekigawa T., Hayashi Y. Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate. Solid-State Electronics. 1984. 27, No 8. P. 827-828. https://doi.org/10.1016/0038-1101(84)90036-4 | | 120. Hisamoto D., Kaga T., Kawamoto Y., Takeda E. A fully depleted lean-channel transistor (DELTA) - A novel vertical ultra thin SOI MOSFET. IEDM Techn. Digest. 1989. P. 833-836. | | 121. Choi Y.-K. FinFET for Terabit era. J. Semiconductor Technol. Sci. 2004. 4, No 1. P. 1-11. | | 122. Miyano S., Hirose M., Masuoka F. Numerical analysis of a cylindrical thin pillar transistor (CYNTHIA). IEEE Trans. Electron Dev. 1992. 39, No 8. P. 1876-1881. https://doi.org/10.1109/16.144678 | | 123. Nitayama A., Takato H., Okabe N. et al. Multi-pillar surrounding gate transistor (M-SGT) for compact and high-speed circuits. IEEE Trans. Electron Dev. 1991. 38, No 3. P. 579-583. https://doi.org/10.1109/16.75169 | | 124. Passi V., Olbrechts B., Raskin J.P. Fabrication of a Quadruple Gate MOSFET in Silicon-on-Insulator technology. In: Abstracts of NATO Advanced Research Workshop "Nanoscaled Semiconductor-on-Insulator Structures and Devices", Sudak, Ukraine, 15-19 October, 2006. P. 11-12. | | 125. Lee C.-W., Afzalian A., Akhavan N.D. et al. Junctionless multigate field-effect transistor. Appl. Phys. Lett. 2009. 94, Issue 5. P. 053511-053513. https://doi.org/10.1063/1.3079411 | | 126. Colinge J.-P., Lee C.W., Afzalian A. et al. Nanowire transistors without junctions. Nature Nanotechnology. 2010. 5, No 3. P. 225-229. https://doi.org/10.1038/nnano.2010.15 | | 127. Yan R.H., Ourmazd A., Lee K.F. Scaling the Si MOSFET: from bulk to SOI to bulk. IEEE Trans. Electron. Dev. 1992. 39, No 7. P. 1704-1710. https://doi.org/10.1109/16.141237 | | 128. Suzuki K., Tanaka T., Tosaka Y. et al. Theory for double-gate SOI MOSFET's. IEEE Trans. Electron Dev. 1993. 40, No 12. P. 2326-2329. https://doi.org/10.1109/16.249482 | | 129. Auth С.P., Plummer J.D. Scaling theory for cylindrical, fully depleted, surrounding-gate MOSFET's. IEEE Electron Dev. Lett. 1997. 18, No 2. P. 74-76. https://doi.org/10.1109/55.553049 | | 130. Choi J.H., Park Y., Min H. Electron mobility behavior in extremely thin SOI MOSFET's. IEEE Electron Dev. Lett. 1995. 18, No 11. P. 527-529. https://doi.org/10.1109/55.468289 | | 131. Esseni D., Mastrapasqua M., Celler G.K. et al. Low field electron and hole mobility of SOI transistors fabricated on ultrathin silicon films for deep submicron technology application. IEEE Trans. Electron Dev. 2001. 48, No 12. P. 2842-2850. https://doi.org/10.1109/16.974714 | | 132. Esseni D., Abramo A., Selmi L., Sangiorgi E. Study of low field electron transport in ultra-thin single and double-gate SOI MOSFETs. IEDM Techn. Digest. 2002. P. 719-722. | | 133. Uchida K. Koga J., Takagi S. Experimental study on carrier transport mechanisms in double- and single-gate ultrathin-body MOSFETs − Coulomb scattering, volume inversion, and δTSOI-induced scattering. IEDM Techn. Digest. 2003. P. 805-808. | | 134. Tihanyi J., Schlötterer H. Influence of the floating substrate potential on the characteristics of ESFI MOS transistors. Solid-State Electron. 1975. 18, No 4. P. 309-314. https://doi.org/10.1016/0038-1101(75)90083-0 | | 135. Kato K., Wada T., Taniguchi K. Analysis of kink characteristics in silicon on insulator MOSFETs using two-carrier modeling. IEEE Trans. Electron Dev. 1985. 32, No 2. P. 458-462. https://doi.org/10.1109/T-ED.1985.21963 | | 136. Colinge J.-P. Reduction of kink effect in thin-film SOI MOSFETs. IEEE Electron Dev. Lett. 1988. 9, No 2. P. 97-99. https://doi.org/10.1109/55.2052 | | 137. Colinge J.-P. Transconductance of Silicon-on-Insulator (SOI) MOSFETs. IEEE Electron Dev. Lett. 1985. 6, No 11. P. 573-574. https://doi.org/10.1109/EDL.1985.26234 | | 138. Lim H.K., Fossum J.G. Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFETs. IEEE Trans. Electron Dev. 1983. 30, No 10. P. 1244-1251. https://doi.org/10.1109/T-ED.1983.21282 | | 139. Rudenko T.E., Rudenko A.N., Nazarov A.N., Lysenko V.S. Characterization of SOI by capa-citance and current measurements with combined gated diode and depletion-mode MOS FET struc-ture. Microelectron. Eng. 1995. 28, No 1-4. P. 475-478. https://doi.org/10.1016/0167-9317(95)00101-D | | 140. Yang I.J., Vieri K., Chandrakasan A., Antoniadis D.A. Back gated CMOS on SOIAS for dynamic threshold voltage control. IEDM Techn. Digest. 1995. P. 877-879. | | 141. Hiramoto T. Low power and low voltage MOSFETs with variable threshold voltage controlled by back-bias. IEICE Trans. Electron. 2000. E83C(2). P. 161-169. | | 142. Passi V., Ravaux F., Dubois E. et al. High gain and fast detection of warfare agents using back-gated silicon nanowired MOSFETs. IEEE Electron Dev. Lett. 2011. 10, No 7. P. 976-978. https://doi.org/10.1109/LED.2011.2146750 | | 143. Dai P., Gao A., Lu N., Li T., Wang Y. A back-gate controlled silicon nanowire sensor with sensitivity improvement for DNA and pH detection. Jpn. J. Appl. Phys. 2013. 52. P. 121301. https://doi.org/10.7567/JJAP.52.121301 | | 144. Fathil M.F.M., Arshad M.K.Md., Hashim U. et al. Design architecture of field-effect transistor with back gate electrode for biosensor application. AIP Conf. Proc. 2016. 1733. P. 020071. https://doi.org/10.1063/1.4948889 | | 145. Rudenko T., Kilchytska V., Raskin J.-P. et al. Special features of the back-gate effects in ultra-thin body SOI MOSFETs. In: Semiconductor-on-Insulator Materials for Nanoelectronics Applications, ed. by A.N. Nazarov, J.-P. Colinge, F. Balestra et al. Springer. 2011. P. 323-339. https://doi.org/10.1007/978-3-642-15868-1_18 | | 146. Rudenko T., Nazarov A., Kilchytska V., Flandre D. A review of special gate coupling effects in long-channel SOIMOSFET with lightly doped ultra-thin bodies and their compact analytical modeling. Solid-State Electron. 2016. 117. P. 66-76. https://doi.org/10.1016/j.sse.2015.11.017 | | 147. Schred Simulation Tool. [Online]. Available: http://nanohub.org. | | 148. Quisse T., Cristoloveanu S., Bor G. Influence of series resistances and interface coupling on the transconductance of fully-depleted silicon-on-insulator MOSFETs. Solid-State Electron. 1992. 35, No 2. P. 141-149. https://doi.org/10.1016/0038-1101(92)90053-F | | 149. Rudenko T., Kilchytska V., Burignat S. et al. Experimental study of transconductance and mobility behaviors in ultra-thin SOI MOSFETs with standard and thin buried oxides. Solid-State Electron. 2010. 54, No 2. P. 164-170. https://doi.org/10.1016/j.sse.2009.12.014 | | 150. Stern F. and Howard W.E. Properties of semi-conductor surface inversion layers in the electric quantum limit. 1967. Phys. Rev. 163, No 3. P. 816-835. https://doi.org/10.1103/PhysRev.163.816 | | 151. Stern F. Self-consistent results for n-type Si inver-sion layers. Phys. Rev. B. 1972. 5, No 12. P. 4891-4899. https://doi.org/10.1103/PhysRevB.5.4891. https://doi.org/10.1103/PhysRevB.5.4891 | | 152. Ohkura Y. Quantum effects in Si n-MOS inversion layer at high substrate concentration. Solid State Electron. 1990. 33, No 12. P. 1581-1585. https://doi.org/10.1016/0038-1101(90)90138-5 | | 153. Janik T. and Majkusiak B. Influence of carrier energy quantization on threshold voltage of metal oxide semiconductor transistor. 1994. J. Appl. Phys. 75, No 10. P. 5186-5190. https://doi.org/10.1063/1.355766 | | 154. Balestra F., Cristoloveanu S., Benachir M. et al. Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance. IEEE Electron Dev. Lett. 1987. 8, No 9. P. 410-412. https://doi.org/10.1109/EDL.1987.26677 | | 155. Ouisse T. Self-consistent quantum-mechanical calculations in ultrathin silicon-on-insulator structures. J. Appl. Phys. 1994. 76, No 10. P. 5989-5995. https://doi.org/10.1063/1.358382 | | 156. Majkusiak B., Janik T., Walczak J. Semiconductor thickness effects in the double-gate SOI MOSFET. IEEE Trans. Electron Dev. 1998. 45, No 5. P. 1127-1133. https://doi.org/10.1109/16.669563 | | 157. Omura Y., Horiguchi S., Tabe M., Kishi K. Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs. IEEE Electron Device Lett. 1993. 14, No 12. P. 569-571. https://doi.org/10.1109/55.260792 | | 158. Uchida K., Koga J., Ohba R. et al. Experimental evidences of quantum-mechanical effects on low field mobility, gate-channel capacitance, and threshold voltage of ultrathin body SOI MOSFETs. IEDM Techn. Digest. 2001. P. 633-636. | | 159. Colinge J.-P., Xiong W., Cleavelin C.R. et al. Room-temperature low-dimensional effects in Pi-gate SOI MOSFETs. IEEE Electron Device Lett. 2006. 27, No 9. P. 775-777. https://doi.org/10.1109/LED.2006.881086 | | 160. Colinge J.-P., Alderman J.C., Xiong W., Cleavelin C.R. Quantum-mechanical effects in trigate SOI MOSFETs. IEEE Trans. Electron Dev. 2006. 53, No 5. P. 1131-1136. https://doi.org/10.1109/TED.2006.871872 | | 161. Colinge J.-P. Quantum-wire effects in trigate SOI MOSFETs. Solid-State Electronics. 2007. 51, No 9. P. 1153−1160. https://doi.org/10.1016/j.sse.2007.07.019 | | 162. Ge L. and Fossum J.G. Analytical modeling of qu-antization and volume inversion in thin Si-film DG MOSFETs. IEEE Trans. Electron Dev. 2002. 49, N. 2.P. 287-293. https://doi.org/10.1109/16.981219 | | 163. Na K.-I., Park K.H., Cristoloveanu S. et al. Low-frequency noise and mobility in triple-gate silicon-on-insulator transistors: Evidence for volume inver-sion effects. Microelectron. Eng. 2012. 98, No 10. P. 85−88. https://doi.org/10.1016/j.mee.2012.05.027 | | 164. Koga J., Takagi S., Toriumi A. Influences of buried-oxide interface on inversion-layer mobility in ultra-thin SOI MOSFETs. IEEE Trans. Electron. Dev. 2002. 49, No 6. P. 1042−1048. https://doi.org/10.1109/TED.2002.1003737 | | 165. Gámiz F., López-Villanueva J.A., Roldán J.B. Phonon-limited electron mobility in ultrathin silicon-on-insulator inversion layers. J. Appl. Phys. 1998. 83, No 9. P. 4802−4806. https://doi.org/10.1063/1.367273 | | 166. Shoji M., Horiguchi S. Electronic structures and phonon limited electron mobility of double-gate silicon-on-insulator Si inversion. J. Appl. Phys. 1999. 85, No 5. P. 2722−2731. https://doi.org/10.1063/1.369589 | | 167. Gámiz F., Roldán J.B., Cartujo-Cassinello P. et al. Electron mobility in extremely thin single-gate silicon-on-insulator inversion layers. J. Appl. Phys. 1999. 86, No 11. P. 6269−6275. https://doi.org/10.1063/1.371684 | | 168. Gámiz F., Roldán J.B., López-Villanueva J. et al. Surface roughness at the Si-SiO2 interfaces in fully depleted silicon-on-insulator inversion layers. J. Appl. Phys. 1999. 86, No 12. P. 6854−6863. https://doi.org/10.1063/1.371763 | | 169. Esseni D., Abramo A., Selmi L., Sangiorgi E. Physically based modelling of low field electron mobility in ultrathin single- and double-gate SOI n-MOSFETs. IEEE Trans. Electron Dev. 2003. 50, No 12. P. 2445−2455. https://doi.org/10.1109/TED.2003.819256 | | 170. Gámiz F., Fischetti M.V. Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: The role of volume inversion. J. Appl. Phys. 2001. 89, No 10. P. 5478−5487. https://doi.org/10.1063/1.1358321 | | 171. Gámiz F., Roldán J.B., Cartujo-Cassinello P. et al. Role of surface-roughness scattering in double gate silicon-on-insulator inversion layers. J. Appl. Phys. 2001. 89, No 3. P. 1764−1770. https://doi.org/10.1063/1.1331076 | |
|
|