Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (3) P. 260-266 (2020).
References
1. Kuhs W.F., Nitsche R., Scheunemann K. The argyrodites - a new family of the tetrahedrally close-packed structures. Mater. Res. Bull. 1979. 14, No 2. P. 241-248. https://doi.org/10.1016/0025-5408(79)90125-9 | | 2. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure - property relations of high temperature ion conductors. Z. Kristallogr. 2005. 220. P. 281-294. https://doi.org/10.1524/zkri.220.2.281.59142 | | 3. Laqibi M., Cros B., Peytavin S., Ribes M. New silver superionic conductors Ag7XY5Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I) - synthesis and electrical properties. Solid State Ionics. 1987. 23. P. 21-26. https://doi.org/10.1016/0167-2738(87)90077-4 | | 4. Studenyak I.P., Pogodin A.I., Studenyak V.I., Izai V.Yu., Filep M.J., Kokhan O.P., Kranjčec M., Kúš P. Electrical properties of copper- and silver-containing superionic (Cu1−xAgx)7SiS5I mixed crystals with argyrodite structure. Solid State Ionics. 2020. 345. P. 115183. https://doi.org/10.1016/j.ssi.2019.115183 | | 5. Orliukas A.F., Kazakevicius E., Kezionis A. et al. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites. Solid State Ionics. 2009. 180, No 2-3. P. 183-186. https://doi.org/10.1016/j.ssi.2008.12.005 | | 6. Studenyak I.P., Izai V.Yu., Studenyak V.I. et al. Influence of Cu6PS5І superionic nanoparticles on the dielectric properties of 6СВ liquid crystal. Liquid Crystals. 2017. 44, No 5. P. 897-903. https://doi.org/10.1080/02678292.2016.1254288 | | 7. Šalkus T., Kazakevičius E., Banys J. et al. Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics. Solid State Ionics. 2014. 262. P. 597-600. https://doi.org/10.1016/j.ssi.2013.10.040 | | 8. Studenyak I.P., Kranjčec M., Izai V.Yu. et al. Structural and temperature-related disordering studies of Cu6PS5I amorphous thin films. Thin Solid Films. 2012. 520, No 6. P. 1729-1733. https://doi.org/10.1016/j.tsf.2011.08.043 | | 9. Fernao Pires V., Romero-Cadaval E., Vinnikov D. et al. Power converter interfaces for electrochemical energy storage systems - A review. Energy Conver-sion and Management. 2014. 86. P. 453-475. https://doi.org/10.1016/j.enconman.2014.05.003 | | 10. Wu Z., Xie Z., Yoshida A. et al. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. Renewable and Sustainable Energy Reviews. 2019. 109. P. 367-385. https://doi.org/10.1016/j.rser.2019.04.035 | | 11. Goodenough J.B., Park K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013. 135, No 4. P. 1167-1176. https://doi.org/10.1021/ja3091438 | | 12. Wen J., Yu Y., Chen C. A review on lithium-ion batteries safety issues: Existing problems and possible solutions. Mater. Exp. 2012. 2, No 3. P. 197-212. https://doi.org/10.1166/mex.2012.1075 | | 13. Fergus J.W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources. 2010. 195, No 15. P. 4554-4569. https://doi.org/10.1016/j.jpowsour.2010.01.076 | | 14. Zhang Z., Zhang Q., Ren C. et al. A ceramic/ polymer composite solid electrolyte for sodium bat-teries. J. Mater. Chem. A. 2016. 4, No 41. P. 15823 -15828. https://doi.org/10.1039/C6TA07590H | | 15. Urusov V.S. Theoretical Crystallochemistry. Moscow: MGU, 1987 (in Russian). | | 16. Rietveld H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969. 2, No 2. P. 65-71. https://doi.org/10.1107/S0021889869006558 | | 17. McCusker L.B., Von Dreele R.B., Cox D.E., Louër D., Scardi P. Rietveld refinement guidelines. J. Appl. Crystallogr. 1999. 32, No 1. P. 36-50. https://doi.org/10.1107/S0021889898009856 | | 18. Altomare A., Burla M.C., Camalli M. et al. EXPO: a program for full powder pattern decomposition and crystal structure solution. J. Appl. Crystallogr. 1999. 32, No 2. P. 339-340. https://doi.org/10.1107/S0021889898007729 | | 19. Altomare A., Cuocci C., Giacovazzo C. et al. EXPO2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 2013. 46, No 4. P. 1231-1235. https://doi.org/10.1107/S0021889813013113 | | 20. Momma K., Izumi F. VESTA 3 for three-dimen-sional visualization of crystal, volumetric and mor-phology data. J. Appl. Crystallogr. 2011. 44. P. 1272-1276. https://doi.org/10.1107/S0021889811038970 | | 21. Ivanov-Schitz A.K., Murin I.V. Solid State Ionics. St.-Petersburg: Univ. Press, 2000 (in Russian). | | 22. Orazem M.E., Tribollet B. Electrochemical Impe-dance Spectroscopy. New Jersey: John Wiley & Sons, 2008. https://doi.org/10.1002/9780470381588 | | 23. Huggins R.A. Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review. Ionics. 2002. 8, No 3. P. 300-313. https://doi.org/10.1007/BF02376083 | |
|
|