Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (3) P. 260-266 (2020).


References

1. Kuhs W.F., Nitsche R., Scheunemann K. The argyrodites - a new family of the tetrahedrally close-packed structures. Mater. Res. Bull. 1979. 14, No 2. P. 241-248.
https://doi.org/10.1016/0025-5408(79)90125-9
2. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure - property relations of high temperature ion conductors. Z. Kristallogr. 2005. 220. P. 281-294.
https://doi.org/10.1524/zkri.220.2.281.59142
3. Laqibi M., Cros B., Peytavin S., Ribes M. New silver superionic conductors Ag7XY5Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I) - synthesis and electrical properties. Solid State Ionics. 1987. 23. P. 21-26.
https://doi.org/10.1016/0167-2738(87)90077-4
4. Studenyak I.P., Pogodin A.I., Studenyak V.I., Izai V.Yu., Filep M.J., Kokhan O.P., Kranjčec M., Kúš P. Electrical properties of copper- and silver-containing superionic (Cu1−xAgx)7SiS5I mixed crystals with argyrodite structure. Solid State Ionics. 2020. 345. P. 115183.
https://doi.org/10.1016/j.ssi.2019.115183
5. Orliukas A.F., Kazakevicius E., Kezionis A. et al. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites. Solid State Ionics. 2009. 180, No 2-3. P. 183-186.
https://doi.org/10.1016/j.ssi.2008.12.005
6. Studenyak I.P., Izai V.Yu., Studenyak V.I. et al. Influence of Cu6PS5І superionic nanoparticles on the dielectric properties of 6СВ liquid crystal. Liquid Crystals. 2017. 44, No 5. P. 897-903.
https://doi.org/10.1080/02678292.2016.1254288
7. Šalkus T., Kazakevičius E., Banys J. et al. Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics. Solid State Ionics. 2014. 262. P. 597-600.
https://doi.org/10.1016/j.ssi.2013.10.040
8. Studenyak I.P., Kranjčec M., Izai V.Yu. et al. Structural and temperature-related disordering studies of Cu6PS5I amorphous thin films. Thin Solid Films. 2012. 520, No 6. P. 1729-1733.
https://doi.org/10.1016/j.tsf.2011.08.043
9. Fernao Pires V., Romero-Cadaval E., Vinnikov D. et al. Power converter interfaces for electrochemical energy storage systems - A review. Energy Conver-sion and Management. 2014. 86. P. 453-475.
https://doi.org/10.1016/j.enconman.2014.05.003
10. Wu Z., Xie Z., Yoshida A. et al. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. Renewable and Sustainable Energy Reviews. 2019. 109. P. 367-385.
https://doi.org/10.1016/j.rser.2019.04.035
11. Goodenough J.B., Park K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013. 135, No 4. P. 1167-1176.
https://doi.org/10.1021/ja3091438
12. Wen J., Yu Y., Chen C. A review on lithium-ion batteries safety issues: Existing problems and possible solutions. Mater. Exp. 2012. 2, No 3. P. 197-212.
https://doi.org/10.1166/mex.2012.1075
13. Fergus J.W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources. 2010. 195, No 15. P. 4554-4569.
https://doi.org/10.1016/j.jpowsour.2010.01.076
14. Zhang Z., Zhang Q., Ren C. et al. A ceramic/ polymer composite solid electrolyte for sodium bat-teries. J. Mater. Chem. A. 2016. 4, No 41. P. 15823 -15828.
https://doi.org/10.1039/C6TA07590H
15. Urusov V.S. Theoretical Crystallochemistry. Moscow: MGU, 1987 (in Russian).
16. Rietveld H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969. 2, No 2. P. 65-71.
https://doi.org/10.1107/S0021889869006558
17. McCusker L.B., Von Dreele R.B., Cox D.E., Louër D., Scardi P. Rietveld refinement guidelines. J. Appl. Crystallogr. 1999. 32, No 1. P. 36-50.
https://doi.org/10.1107/S0021889898009856
18. Altomare A., Burla M.C., Camalli M. et al. EXPO: a program for full powder pattern decomposition and crystal structure solution. J. Appl. Crystallogr. 1999. 32, No 2. P. 339-340.
https://doi.org/10.1107/S0021889898007729
19. Altomare A., Cuocci C., Giacovazzo C. et al. EXPO2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 2013. 46, No 4. P. 1231-1235.
https://doi.org/10.1107/S0021889813013113
20. Momma K., Izumi F. VESTA 3 for three-dimen-sional visualization of crystal, volumetric and mor-phology data. J. Appl. Crystallogr. 2011. 44. P. 1272-1276.
https://doi.org/10.1107/S0021889811038970
21. Ivanov-Schitz A.K., Murin I.V. Solid State Ionics. St.-Petersburg: Univ. Press, 2000 (in Russian).
22. Orazem M.E., Tribollet B. Electrochemical Impe-dance Spectroscopy. New Jersey: John Wiley & Sons, 2008.
https://doi.org/10.1002/9780470381588
23. Huggins R.A. Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review. Ionics. 2002. 8, No 3. P. 300-313.
https://doi.org/10.1007/BF02376083