Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (3) P. 276-281 (2020).


References

1. Lira A., Speghini A., Camarillo E., Bettinelli M., Caldino U. Spectroscopic evaluation of Zn(PO3)2:Dy3+ glass as an active medium for solid state yellow laser. Opt. Mater. 2014. 38. P. 188-192.
https://doi.org/10.1016/j.optmat.2014.10.024
2. Jackson S.D. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser. Appl. Phys. Lett. 2003. 83. P. 1316-1318.
https://doi.org/10.1063/1.1603353
3. Kesavulu C.R., Jayasankar C.K. White light emis-sion in Dy3+-doped lead fluorophosphate glasses. Mater. Chem. Phys. 2011. 130. P. 1078-1085.
https://doi.org/10.1016/j.matchemphys.2011.08.037
4. Samson B.N., Medeiros Neto J.A., Laming R.I., Hewak D.W. Dysprosium doped Ga:La:S glass for an efficient optical fibre amplifier operating at 1.3 µm. Electron. Lett. 1994. 30. P. 1617-1619.
https://doi.org/10.1049/el:19941062
5. Bjorklund S., Filipescu N., Hurt C.R., Kellermeyer G., McAvoy N. Laser action from terbium tri-fluoroacetylacetonate in p-dioxane and acetonitrile at room temperature. Appl. Phys. Lett. 1967. 10. P. 160-162.
https://doi.org/10.1063/1.1754892
6. Sun K.H., Huggins M.L. Energy additivity in oxygen-containing crystals and glasses. J. Phys. Colloid Chem. 1947. 51. P. 438-443.
https://doi.org/10.1021/j150452a009
7. Varshnaya A.H. Fundamentals of Inorganic Glasses. Academic Press, San Diego, 1994.
https://doi.org/10.1016/B978-0-08-057150-8.50025-2
8. Kaczmarek S.M. Li2B4O7 glasses doped with Cr, Co, Eu and Dy. Opt. Mater. 2002. 19. P. 189-194.
https://doi.org/10.1016/S0925-3467(01)00218-X
9. Savage J.A. Materials for infrared fibre optics. Mater. Sci. Rep. 1987. 2. P. 99-137.
https://doi.org/10.1016/S0920-2307(87)80001-4
10. Kashif I., A. Abd El. Maboud, Ratep A. Effect of Nd2O3 addition on structure and characterization of lead bismuth borate glass. Results Phys. 2014. 4. P. 1-5.
https://doi.org/10.1016/j.rinp.2013.11.002
11. Amaranath G., Buddhudu S., Bryant F.J. Spectroscopic properties of Tb3+-doped fluoride glasses. J. Non-Cryst. Solids. 1990. 122. P. 66-73.
https://doi.org/10.1016/0022-3093(90)90226-C
12. Yamashita T., Ohishi Y. Concentration and temperature effects on the spectroscopic properties of Tb3+ doped borosilicate glasses. J. Appl. Phys. 2007. 102. P. 123107-13.
https://doi.org/10.1063/1.2821789
13. Zhang L., Peng M., Dong G., Qiu J. An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser. Opt. Mater. 2012. 34. P. 1202-1207.
https://doi.org/10.1016/j.optmat.2012.01.031
14. Kesavulu C.R., Silva A.C.A., Dousti M.R. et al. Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses. J. Lumin. 2015. 165. P. 77-84.
https://doi.org/10.1016/j.jlumin.2015.04.012