Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (3) P. 282-289 (2020).


References

1. Bednorz J.G., and Müller K.A. Perovskite type oxides - the new approach to high Tc superconductivity: Nobel Lecture. Uspekhi fizicheskikh nauk. 1988. 156, No 2. P. 323-346.
2. Vinetsky V.L., Pashitsky E.A. Superfluidity of charged Bose gas and BP mechanism of super-conductivity. Ukr. Fiz. Zh. 1975. 20. P. 338-343.
3. Alexandrov A.S. Strong-coupling theory of high temperature superconductivity, Ch. 1 in: Studies in High Temperature Superconductivity, Ed. A.V. Narlicar. P. 1-69. Nova Science Publ., Inc., New York, 2006.
4. Grusdt F., Astrakharchik G.E., Demler E. Bose polarons in ultracold atoms in one dimension: Beyond the Fröhlich paradigm. New J. Phys. 2017. 19, No 10. Article number 103035. P. 1-31.
https://doi.org/10.1088/1367-2630/aa8a2e
5. Vinetsky V.L., Kasirina N.I. and Pashitsky E.A. BP states of great radius and the problem of high temperature superconductivity. Ukr. Fiz. Zhurnal. 1992. 37. P. 76-94.
6. Lakhno V.D. Superconducting properties of a non-ideal BP gas. Physica C: Superconductivity and its Applications. 2019. 561. P. 1-8.
https://doi.org/10.1016/j.physc.2018.10.009
7. Lakhno V.D. Translational-invariant BPs and superconductivity. Condens. Matter. 2020. 5, No 2. P. 30-79.
https://doi.org/10.3390/condmat5020030
8. Devreese J.T., Alexandrov A.S. Fröhlich polaron and BP: Recent developments. Rep. Progr. Phys. 2009. 72, No 6. Article number 066501. P. 1-52.
https://doi.org/10.1088/0034-4885/72/6/066501
9. Kashirina N.I., Kashуrina Ya.O., Korol O.A., Roik O.S. Calculation of singlet and triplet energy states of the two-dimensional (2D) H- ion and 2D He atom. Phys. & Astron. Int. J. 2020. 4, No 3. P. 107- 111.
10. Singh R. Semianalytical wavefunctions and Kohn-Sham exchange-correlation potentials for two-electron atomic systems in two-dimensions. J. Phys. B: Atomic, Molecular and Optical Physics. 2020. 53, No 3. Article number 035001. P. 1-10.
https://doi.org/10.1088/1361-6455/ab56be
11. Ge Y. Let students derive, by themselves, two-dimensional atomic and molecular quantum chemistry from scratch. J. Chem. Education. 2016. 93, No 12. P. 2033-2039.
https://doi.org/10.1021/acs.jchemed.6b00572
12. Skobelev V.V., Krasin V.P., Soiustova S.I. On the "two-dimensional" hydrogen molecule. Izvestiyia vuzov. Fizika. 2019. No 12. P. 21-26.
https://doi.org/10.17223/00213411/62/12/21
13. Iadonisi G., Ranninger J., de Filips G. Polarons in Bulk Materials and Systems with Reduced Dimen-sionality. IOS Press: Washington DC, USA, 2006.
14. Emin D. Dynamic d-symmetry Bose condensate of a planar-large-BP-liquid in cuprate supercon-ductors. Phil. Mag. 2017. 97, No 31. P. 2931-2945.
https://doi.org/10.1080/14786435.2017.1354137
15. Dzhumanov S., Baimatov P.J., Inoyatov S.T. et al. Formation of intermediate coupling optical polarons and BPs in two-dimensional systems. Phys. Lett. A. 2019. 383, No 12. P. 1330-1335.
https://doi.org/10.1016/j.physleta.2019.01.028
16. Ribeiro L.F.Jr, Stafström S. Polaron stability in molecular semiconductors: Theoretical insight into the impact of the temperature, electric field and the system dimensionality. Phys. Chem. Phys. 2015. 17, No 14. P. 8973-8982.
https://doi.org/10.1039/C4CP06028H
17. Novoselov K.S., Geim A.K., Morozov S.V. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature. 2005. 438(7065). P. 197-200.
https://doi.org/10.1038/nature04233
18. Silva G.G., Ribeiro L.A. Jr, Pereira M.L. Jr et al. Bipolaron dynamics in graphene nano-ribbons. Sci. Rep. 2019. 9, No 1. Article number 2909. P. 1-8.
https://doi.org/10.1038/s41598-019-39774-2
19. Bergstra J., Bengio Y. Random search for hyper-parameter optimization. J. Machine Learn. Res. 2012. 13, No 10. P. 281-305.
20. Kirgat G.S., Surde A.N. Review of Hooke and Jeeves direct search solution method analysis applicable to mechanical design engineering. Int. J. Innovat. in Eng. Res. and Technol. (IJIERT). 2014. 1, No 2. P. 1-14.
21. Kashirina N.I., Lakhno V.D. Spatial configuration of a bipolaron and the virial theorem. Physics of the Solid State. 50, No 1. P. 9-15.
https://doi.org/10.1134/S1063783408010034
22. Kashirina N.I. Pekar bipolaron and the virial theorem (arbitrary coupling). Semiconductor Physics, Quantum Electronics & Optoelectronics. 2014. 7, No 3. P. 60-67.
https://doi.org/10.15407/spqeo17.03.260
23. Kashirina N.I., Korol O.A. Condensons and bicondensons in one-dimensional systems. Semiconductor Physics, Quantum Electronics & Optoelectronics. 2018. 21, No 3. P. 231-237.
https://doi.org/10.15407/spqeo21.03.231
24. Kashirina N.I., Lakhno V.D. Correlation effects and configuration of a one-dimensional bipolaron. Phys. Lett. A. 2019. 383, No 35. 126003 (8 p.).
https://doi.org/10.1016/j.physleta.2019.126003