Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (3) P. 308-315 (2020).
References
1. Maier S.A. Plasmonics: Fundamentals and Applications. NY: Springer, New York, 2007. https://doi.org/10.1007/0-387-37825-1 | | 2. Vinogradov S.V., Kononov M.A., Savranskii V.V., Valyanskii S.I., Urbaitis M.F. Effect of optical sensitisation on a surface plasmon resonance. Quantum Electronics. 2003. 33, No 8. P. 711-713. https://doi.org/10.1070/QE2003v033n08ABEH002483 | | 3. Atwater H. The Promise of Plasmonics. Scientific American. 2007. 17, No 3s. P. 56-63. https://doi.org/10.1038/scientificamerican0907-56sp | | 4. Noguez C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C. 2007. 111, No 10. P. 3806-3819. https://doi.org/10.1021/jp066539m | | 5. Jeffrey N.A., Hall W.P., Lyandres O., Shah N.C., Zhao J., Van Duyne R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008. 7, No 6. P. 442-452. https://doi.org/10.1038/nmat2162 | | 6. Atwater H.A., Polman A. Plasmonics for improved photovoltaic devices. Nature Materials. 2010. 9. P. 205-230. https://doi.org/10.1038/nmat2629 | | 7. Jyh-Lih Wu, Fang-Chung Chen, Yu-Sheng Hsiao et al. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano. 2011. 5, No 2. P. 959-967. https://doi.org/10.1021/nn102295p | | 8. Tyler Fleetham, Jea-Young Choi, Hyung Woo Choi et al. Photocurrent enhancements of organic solar cells by altering dewetting of plasmonic Ag nanoparticles. Sci. Rept. 2015. 5. P. 1-5. https://doi.org/10.1038/srep14250 | | 9. Landau L.D., Lifshitz E.M. Electrodynamics of Continuous Media. Pergamon Press, 1984. https://doi.org/10.1016/B978-0-08-030275-1.50007-2 | | 10. Semchuk O.Yu., Havryliuk O.O., Biliuk A.A. Energy absorption of laser radiation by metal nanoparticles in the conditions of surface plasmon resonance. Surface. 2019. 11, No 26. P. 496-507. https://doi.org/10.15407/Surface.2019.11.496 | | 11. Petrov Yu.I. Physics of Small Particles. Moscow, Nauka, 1982 (in Russian). | | 12. Hu Min, Novo C., Funston A. et al. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. J. Mater. Chem. 2008. 18. P. 1949-1960. https://doi.org/10.1039/b714759g | | 13. Tihay F., Pourroy G., Richard-Plouet M. et al. Effect of Fischer-Tropsh synthesis on the microstructure of Fe-Co-based metal/spinel composite materials. Applied Catalysis A: General. 2001. 206, No 1. P. 29-42. https://doi.org/10.1016/S0926-860X(00)00595-0 | | 14. Link S., Wang Z.L., El-Sayed M.A. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B. 1999. 103, No 18. P. 3529-3533. https://doi.org/10.1021/jp990387w | | 15. Tomchuk P.M., Tomchuk B.P. Optical absorption of small metal particles. J. Exper. Theor. Phys. 1997. 85, No 2. P. 360-369. https://doi.org/10.1134/1.558284 | | 16. Kreibig U., Volmer M. Optical Properties of Meta Clusters. Springer-Verlag, Berlin, 1995. https://doi.org/10.1007/978-3-662-09109-8 | |
|
|