Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (3) P. 323-328 (2020).


References

1. Barachevsky V.A. Current status of develoment of light-sensitive media for holography (a review). Optics and Spectroscopy. 2018. 124. P. 373-407.
https://doi.org/10.1134/S0030400X18030062
2. Nikolova L., Ramanujam P.S. Polarization Holography. Cambridge, UK, Cambridge University Press, 2009.
https://doi.org/10.1017/CBO9780511581489
3. Bian S., Williams J.M., Kim D.Yu. et al. Photoinduced surface deformations on azobenzene polymer films. J. Appl. Phys. 1999. 86. P. 4498-4502.
https://doi.org/10.1063/1.371393
4. Davidenko N.A., Savchenko I.A., Davidenko I.I. et al. Hologram recording and electrooptic effect in azobenzene derivative polymers and azobenzene-cobalt polycomplexes. Techn. Phys. 2007. 52. P. 451-455.
https://doi.org/10.1134/S1063784207040093
5. Davidenko N.A., Davidenko I.I., Pavlov V.A. et al. Adjustment of diffraction efficiency of polarization holograms in azobenzene polymer films using electric fields. J. Appl. Phys. 2017. 122. P. 013101-1-6.
https://doi.org/10.1063/1.4990995
6. Priimagi A., Shevchenko A.J. Azopolymer-based micro- and nanopatterning for photonic applica-tions. Polymer Sci. Part B: Polymer Phys. 2014. 52. P. 163-182.
https://doi.org/10.1002/polb.23390
7. Natansohn A., Rochon P. Photoinduced motion in azo-containing polymers. Chem. Rev. 2002. 102. P. 4139-4175.
https://doi.org/10.1021/cr970155y
8. Simonov A.N., Uraev D.V., Kostromin S.G. et al. Polarization-controlled optical recording in azocontaining amorphous polymer films. Laser Physics. 2002. 12. P. 1294-1302.
9. Emoto A., Uchida E., Fukuda T. Optical and physical applications of photocotrollable materials: azobenzene-containing and liquid crystalline polymers. Polymers. 2012. 4. P. 150-186.
https://doi.org/10.3390/polym4010150
10. Karageorgiev P., Neher D., Schulz B. et al. From anisotropic photo-fluidity towards nanomanipu-lation in the optical near-field. Nature Materials. 2005. 4, No 9. P. 699-703.
https://doi.org/10.1038/nmat1459
11. Garrot D., Lassailly Y., Lahlil K. et al. Real-time near-field imaging of photoinduced material motion in thin solid films containing azobenzene deriva-tives. Appl. Phys. Lett. 2009. 94. P. 033303-1-3.
https://doi.org/10.1063/1.3073742
12. Zhou J., Yang J., Ke Y., Shen J., Zhang Q., Wang K. Fabrication of polarization grating and surface relief grating in crosslinked and non-crosslinking azopolymer by polarization holography method. Optical Materials. 2008. 30. P. 1787-1895.
https://doi.org/10.1016/j.optmat.2007.08.011
13. Häckel M., Kador L., Kropp D., Schmidt H.-W. Polymer blends in azobenzene-containing block copolymers in stable rewritable holographic media. Adv. Mater. 2007. 19. P. 227-231.
https://doi.org/10.1002/adma.200601458
14. Davidenko N.A., Davidenko I.I., Pavlov V.A. et al. Recording media for polarization holography with diffraction efficiency adjusted using electric field. Optik - Intern. Journal for Light and Electron Optics. 2018. 158. P. 1308-1312.
https://doi.org/10.1016/j.ijleo.2018.01.018
15. Davidenko N.A., Davidenko I.I., Pavlov V.A. et al. Recording medium based on the azobenzene copolymer with free surface and in sandwich-structure for polarization holography. Optical Materials. 2018. 76. P. 169-173.
https://doi.org/10.1016/j.optmat.2017.12.027
16. Davidenko N.A., Davidenko I.I., Pavlov V.A., Tarasenko V.V. Experimental investigations of the relaxation of polarization holograms in films of azobenzene polymers with chromophores with different substitutes. Optik. 2018. 165. P. 174-178.
https://doi.org/10.1016/j.ijleo.2018.03.117
17. Ushiwata T., Okamoto E., Kaino T. Development of thermally stable novel EO-polymers. Mol. Cryst. Liquid Cryst. 2002. 374. P. 303-314.
https://doi.org/10.1080/10587250210421
18. Wu L., Tuo X., Cheng H., Chen Z., Wang X. Synthesis, photoresponsive behavior, and self-assembly of poly(acrylic acid)-based azo polyelectrolytes. Macromolecules. 2001. 34. P. 8005-8013.
https://doi.org/10.1021/ma002215z
19. Kang E.-H., Liu X., Sun J., Shen J. Robust ion-permselective multilayer films prepared by photolysis of polyelectrolyte multilayers containing photo-cross-linkable and photolabile groups. Langmuir. 2006. 22. P. 7894-7901.
https://doi.org/10.1021/la0612320
20. Viswanathan N.K., Balasubramanian S., Li L. et al. Surface-initiated mechanism for the formation of relief gratings on azo-polymer films. J. Phys. Chem. Part B. 1998. 102. P. 6064-6070.
https://doi.org/10.1021/jp981425z
21. He Y., Wang H., Tuo X., Deng W., Wang X. Synthesis, self-assembly and photoinduced surface-relief gratings of a polyacrylate-based azo polyelectrolyte. Opt. Mater. 2004. 26. P. 89-93.
https://doi.org/10.1016/j.optmat.2004.01.014
22. Goldenberg L.M., Kulikovsky L., Kulikovska O., Stumpe J. New materials with detachable azo-benzene: effective, colourless and extremely stable surface relief gratings. J. Mater. Chem. 2009. 19. P. 8068-8071.
https://doi.org/10.1039/b918130j
23. Kamruzzaman M., Ogata T., Kuwahara Y., Ujiie S., Kurihara S. Thermal and photo alignment behavior of polymers in multiply-layered films composed of polyethylene imines having azobenzene side chain groups and polyvinyl alcohol. Mol. Cryst. Liquid Cryst. 2010. 529. P. 32-41.
https://doi.org/10.1080/15421406.2010.495688
24. Wang X., Chen J.-I., Marturunkakul S., Li L., Kumar J., Tripathy S.K. Epoxy-based nonlinear optical polymers functionalized with tricyanovinyl chromophores. Chem. Mater. 1997. 9. P. 45-50.
https://doi.org/10.1021/cm950560a
25. Wang X., Kumar J., Tripathy S.K. et al. Epoxy-based nonlinear optical polymers from post azo coupling reaction. Macromolecules. 1997. 30. P. 219-225.
https://doi.org/10.1021/ma961010g
26. Breiner T., Kreger K., Hagen R. et al. Blends of poly(methacrylate) block copolymers with photo-addressable segments. Macromolecules. 2007. 40. P. 2100-2108.
https://doi.org/10.1021/ma0624907
27. Mao G., Wang J., Clingman S.R. et al. Molecular design, synthesis, and characterization of liquid crystal-coil diblock copolymers with azobenzene side groups. Macromolecules. 1997. 30. P. 2556-2567.
https://doi.org/10.1021/ma9617835
28. Hayakawa T., Horiuchi S., Shimizu H., Kawazoe T., Ohtsu M. Synthesis and characterization of polystyrene-b-poly(1,2-isoprene-ran-3,4-isoprene) block copolymers with azobenzene side groups. J. Polym. Sci. Part A: Polym. Chem. 2002. 40. P. 2406-2414.
https://doi.org/10.1002/pola.10330
29. Frenz C., Fuchs A., Schmidt H.-W., Theissen U., Haarer D. Diblock copolymers with azobenzene side-groups and polystyrene matrix: synthesis, characterization and photoaddressing. Macromol. Chem. Phys. 2004. 205. P. 1246-1258.
https://doi.org/10.1002/macp.200400046
30. Häckel M., Kador L., Kropp D., Frenz C., Schmidt H.-W. Holographic gratings in diblock copolymers with azobenzene and mesogenic side groups in the photoaddressable dispersed phase. Adv. Fund. Mater. 2005. 75. P. 1722-1727.
https://doi.org/10.1002/adfm.200500158
31. Schwetlick K. Organicum. Wiley-VCH Verlag GmbH, 2001.
32. Collier R.J., Burckhart C.B., Lin L.H. Optical Holography. NY. -London: Academic Press, 1973.
33. Davidenko N.A., Davidenko I.I., Pavlov V.A. et al. Photo-thermoplastic recording media and its application in the holographic method of determination of refractive index of liquid objects. Appl. Opt. 2018. 57. P. 1832-1837.
https://doi.org/10.1364/AO.57.001832
34. Davidenko N.A., Davidenko I.I., Ishchenko A.A. et al. Effect of azo dyes on the photoconductivity and diffraction efficiency of holographic recording media. Theor. Exp. Chem. 2018. 54, No 5. P. 316-321.
https://doi.org/10.1007/s11237-018-9576-4
35. Mahilny U.V., Marmysh D.N., Tolstik A.L. et al. Phase hologram formation in highly concentrated phenanthrenequinone - PMMA media. J. Opt. A: Pure Appl. Opt. 2008. 10. P. 085302.
https://doi.org/10.1088/1464-4258/10/8/085302
36. Mahilny U.V., Marmysh D.N., Stankevich A.I. et al. Holographic volume gratings in a glass-like polymer material. Appl. Phys. B: Lasers and Optics. 2006. 82. P. 299-302.
https://doi.org/10.1007/s00340-005-2006-z
37. Marmysh D.N., Mahilny U.V. Polarization volume holograms in layers of polymethylmethacrylate with phenanthreneqinone. Tech. Phys. 2013. 58. P. 1665-1670.
https://doi.org/10.1134/S1063784213110182