Semiconductor Physics, Quantum Electronics and Optoelectronics, 23 (3) P. 323-328 (2020).
References
1. Barachevsky V.A. Current status of develoment of light-sensitive media for holography (a review). Optics and Spectroscopy. 2018. 124. P. 373-407. https://doi.org/10.1134/S0030400X18030062 | | 2. Nikolova L., Ramanujam P.S. Polarization Holography. Cambridge, UK, Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511581489 | | 3. Bian S., Williams J.M., Kim D.Yu. et al. Photoinduced surface deformations on azobenzene polymer films. J. Appl. Phys. 1999. 86. P. 4498-4502. https://doi.org/10.1063/1.371393 | | 4. Davidenko N.A., Savchenko I.A., Davidenko I.I. et al. Hologram recording and electrooptic effect in azobenzene derivative polymers and azobenzene-cobalt polycomplexes. Techn. Phys. 2007. 52. P. 451-455. https://doi.org/10.1134/S1063784207040093 | | 5. Davidenko N.A., Davidenko I.I., Pavlov V.A. et al. Adjustment of diffraction efficiency of polarization holograms in azobenzene polymer films using electric fields. J. Appl. Phys. 2017. 122. P. 013101-1-6. https://doi.org/10.1063/1.4990995 | | 6. Priimagi A., Shevchenko A.J. Azopolymer-based micro- and nanopatterning for photonic applica-tions. Polymer Sci. Part B: Polymer Phys. 2014. 52. P. 163-182. https://doi.org/10.1002/polb.23390 | | 7. Natansohn A., Rochon P. Photoinduced motion in azo-containing polymers. Chem. Rev. 2002. 102. P. 4139-4175. https://doi.org/10.1021/cr970155y | | 8. Simonov A.N., Uraev D.V., Kostromin S.G. et al. Polarization-controlled optical recording in azocontaining amorphous polymer films. Laser Physics. 2002. 12. P. 1294-1302. | | 9. Emoto A., Uchida E., Fukuda T. Optical and physical applications of photocotrollable materials: azobenzene-containing and liquid crystalline polymers. Polymers. 2012. 4. P. 150-186. https://doi.org/10.3390/polym4010150 | | 10. Karageorgiev P., Neher D., Schulz B. et al. From anisotropic photo-fluidity towards nanomanipu-lation in the optical near-field. Nature Materials. 2005. 4, No 9. P. 699-703. https://doi.org/10.1038/nmat1459 | | 11. Garrot D., Lassailly Y., Lahlil K. et al. Real-time near-field imaging of photoinduced material motion in thin solid films containing azobenzene deriva-tives. Appl. Phys. Lett. 2009. 94. P. 033303-1-3. https://doi.org/10.1063/1.3073742 | | 12. Zhou J., Yang J., Ke Y., Shen J., Zhang Q., Wang K. Fabrication of polarization grating and surface relief grating in crosslinked and non-crosslinking azopolymer by polarization holography method. Optical Materials. 2008. 30. P. 1787-1895. https://doi.org/10.1016/j.optmat.2007.08.011 | | 13. Häckel M., Kador L., Kropp D., Schmidt H.-W. Polymer blends in azobenzene-containing block copolymers in stable rewritable holographic media. Adv. Mater. 2007. 19. P. 227-231. https://doi.org/10.1002/adma.200601458 | | 14. Davidenko N.A., Davidenko I.I., Pavlov V.A. et al. Recording media for polarization holography with diffraction efficiency adjusted using electric field. Optik - Intern. Journal for Light and Electron Optics. 2018. 158. P. 1308-1312. https://doi.org/10.1016/j.ijleo.2018.01.018 | | 15. Davidenko N.A., Davidenko I.I., Pavlov V.A. et al. Recording medium based on the azobenzene copolymer with free surface and in sandwich-structure for polarization holography. Optical Materials. 2018. 76. P. 169-173. https://doi.org/10.1016/j.optmat.2017.12.027 | | 16. Davidenko N.A., Davidenko I.I., Pavlov V.A., Tarasenko V.V. Experimental investigations of the relaxation of polarization holograms in films of azobenzene polymers with chromophores with different substitutes. Optik. 2018. 165. P. 174-178. https://doi.org/10.1016/j.ijleo.2018.03.117 | | 17. Ushiwata T., Okamoto E., Kaino T. Development of thermally stable novel EO-polymers. Mol. Cryst. Liquid Cryst. 2002. 374. P. 303-314. https://doi.org/10.1080/10587250210421 | | 18. Wu L., Tuo X., Cheng H., Chen Z., Wang X. Synthesis, photoresponsive behavior, and self-assembly of poly(acrylic acid)-based azo polyelectrolytes. Macromolecules. 2001. 34. P. 8005-8013. https://doi.org/10.1021/ma002215z | | 19. Kang E.-H., Liu X., Sun J., Shen J. Robust ion-permselective multilayer films prepared by photolysis of polyelectrolyte multilayers containing photo-cross-linkable and photolabile groups. Langmuir. 2006. 22. P. 7894-7901. https://doi.org/10.1021/la0612320 | | 20. Viswanathan N.K., Balasubramanian S., Li L. et al. Surface-initiated mechanism for the formation of relief gratings on azo-polymer films. J. Phys. Chem. Part B. 1998. 102. P. 6064-6070. https://doi.org/10.1021/jp981425z | | 21. He Y., Wang H., Tuo X., Deng W., Wang X. Synthesis, self-assembly and photoinduced surface-relief gratings of a polyacrylate-based azo polyelectrolyte. Opt. Mater. 2004. 26. P. 89-93. https://doi.org/10.1016/j.optmat.2004.01.014 | | 22. Goldenberg L.M., Kulikovsky L., Kulikovska O., Stumpe J. New materials with detachable azo-benzene: effective, colourless and extremely stable surface relief gratings. J. Mater. Chem. 2009. 19. P. 8068-8071. https://doi.org/10.1039/b918130j | | 23. Kamruzzaman M., Ogata T., Kuwahara Y., Ujiie S., Kurihara S. Thermal and photo alignment behavior of polymers in multiply-layered films composed of polyethylene imines having azobenzene side chain groups and polyvinyl alcohol. Mol. Cryst. Liquid Cryst. 2010. 529. P. 32-41. https://doi.org/10.1080/15421406.2010.495688 | | 24. Wang X., Chen J.-I., Marturunkakul S., Li L., Kumar J., Tripathy S.K. Epoxy-based nonlinear optical polymers functionalized with tricyanovinyl chromophores. Chem. Mater. 1997. 9. P. 45-50. https://doi.org/10.1021/cm950560a | | 25. Wang X., Kumar J., Tripathy S.K. et al. Epoxy-based nonlinear optical polymers from post azo coupling reaction. Macromolecules. 1997. 30. P. 219-225. https://doi.org/10.1021/ma961010g | | 26. Breiner T., Kreger K., Hagen R. et al. Blends of poly(methacrylate) block copolymers with photo-addressable segments. Macromolecules. 2007. 40. P. 2100-2108. https://doi.org/10.1021/ma0624907 | | 27. Mao G., Wang J., Clingman S.R. et al. Molecular design, synthesis, and characterization of liquid crystal-coil diblock copolymers with azobenzene side groups. Macromolecules. 1997. 30. P. 2556-2567. https://doi.org/10.1021/ma9617835 | | 28. Hayakawa T., Horiuchi S., Shimizu H., Kawazoe T., Ohtsu M. Synthesis and characterization of polystyrene-b-poly(1,2-isoprene-ran-3,4-isoprene) block copolymers with azobenzene side groups. J. Polym. Sci. Part A: Polym. Chem. 2002. 40. P. 2406-2414. https://doi.org/10.1002/pola.10330 | | 29. Frenz C., Fuchs A., Schmidt H.-W., Theissen U., Haarer D. Diblock copolymers with azobenzene side-groups and polystyrene matrix: synthesis, characterization and photoaddressing. Macromol. Chem. Phys. 2004. 205. P. 1246-1258. https://doi.org/10.1002/macp.200400046 | | 30. Häckel M., Kador L., Kropp D., Frenz C., Schmidt H.-W. Holographic gratings in diblock copolymers with azobenzene and mesogenic side groups in the photoaddressable dispersed phase. Adv. Fund. Mater. 2005. 75. P. 1722-1727. https://doi.org/10.1002/adfm.200500158 | | 31. Schwetlick K. Organicum. Wiley-VCH Verlag GmbH, 2001. | | 32. Collier R.J., Burckhart C.B., Lin L.H. Optical Holography. NY. -London: Academic Press, 1973. | | 33. Davidenko N.A., Davidenko I.I., Pavlov V.A. et al. Photo-thermoplastic recording media and its application in the holographic method of determination of refractive index of liquid objects. Appl. Opt. 2018. 57. P. 1832-1837. https://doi.org/10.1364/AO.57.001832 | | 34. Davidenko N.A., Davidenko I.I., Ishchenko A.A. et al. Effect of azo dyes on the photoconductivity and diffraction efficiency of holographic recording media. Theor. Exp. Chem. 2018. 54, No 5. P. 316-321. https://doi.org/10.1007/s11237-018-9576-4 | | 35. Mahilny U.V., Marmysh D.N., Tolstik A.L. et al. Phase hologram formation in highly concentrated phenanthrenequinone - PMMA media. J. Opt. A: Pure Appl. Opt. 2008. 10. P. 085302. https://doi.org/10.1088/1464-4258/10/8/085302 | | 36. Mahilny U.V., Marmysh D.N., Stankevich A.I. et al. Holographic volume gratings in a glass-like polymer material. Appl. Phys. B: Lasers and Optics. 2006. 82. P. 299-302. https://doi.org/10.1007/s00340-005-2006-z | | 37. Marmysh D.N., Mahilny U.V. Polarization volume holograms in layers of polymethylmethacrylate with phenanthreneqinone. Tech. Phys. 2013. 58. P. 1665-1670. https://doi.org/10.1134/S1063784213110182 | |
|
|