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Abstract. The work is aimed at studying the influence of correlation effects on the 

interaction energy of two-dimensional (2D) polarons. The two-center configuration of 2D 

bipolaron corresponds to a shallow secondary minimum, which occurs when only the 

correlations associated with the permutation symmetry of the system are taken into account. 

The correlations associated with the direct dependence of the electron wave function on the 

distance between electrons lead to stabilization of the one-center configuration, and the 

secondary minimum corresponding to the two-center configuration disappears. Variational 

calculations were performed using a multiparameter Gaussian functions with correlation 

multipliers. The ground state energy of bipolaron is E2 = –0.542169 Eh
*
 for η = ε∞/ε0 = 0, 

where ε∞ and ε0 are the high-frequency and static dielectric constants of the crystal, 

respectively, Eh
*
 is the effective Hartree energy. The binding energy of bipolaron was 

calculated with respect to the double energy of 2D polaron obtained for wave function, 

consisting of 5 Gaussian exponents. The ground state energy of 2D polaron is  

E1 = –0.202366 Eh
*
 for η = 0. The critical value of the ionicity parameter η corresponds to 

ηс ≈ 0.2. At η > ηc, 2D bipolaron breaks up into two 2D polarons. 
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1. Introduction 

Interest in bipolaron (BP) problem increased after the 

discovery of the high temperature superconductivity 

(HTSC) in the cuprate metal oxide compounds (MOC) 

[1]. Vinetsky and Pashitsky predicted the possibility of 

HTSC due to Bose condensation of BP gas long before 

the discovery of the HTSC phenomenon [2]. In the same 

work, the gap nature of superconductivity (SC) and 

HTSC associated with Bose condensation of large radius 

BPs was proved. A significant amount of work devoted 

to studying BP mechanisms of SC was performed both 

for small-radius BPs [3, 4] and large-radius BPs [5–8].  

As known, a decrease in the system dimension leads 

to a significant increase in the binding energy of low-

dimensional atoms [9, 10] and molecules [11, 12], as 

well as localized and self-localized states in condensed 

systems, such as shallow impurity centers and their 

complexes, D– centers, polarons, and BPs [13–16]. 

Examples of two-dimensional systems are crystal 

structures that have translational symmetry in only two 

directions. In the direction perpendicular to the plane of 

the crystal, the effective mass of the charge carriers is so 

large that the movement in this direction can be 

neglected. Two-dimensional crystals can be located on 

the surface of bulk crystals or at the surface of liquid 

solutions. An example of a two-dimensional crystal is the 

well-known graphene [17, 18]. Conductive layers in 

cuprate MOC, in which HTSC was observed, can be 

considered as two-dimensional systems. An example is 

the La2CuO4 system, in which electrons are localized in 

the CuO2 layers. Two-dimensional and one-dimensional 

crystals have a band structure and can be both metals and 

semiconductors or dielectrics. So, pure graphene is a 

two-dimensional crystal with a zero band gap. In this 

case, the law of electron energy dispersion in the conduc-

tion band has a linear dependence on the wave vector 
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[17]. At the same time, there are modifications of 

graphene with an anomalously wide band gap [18]. Thus, 

by changing the doping value or the properties of the 

substrate on which the crystal was grown, it is possible to 

change both the band gap and the dispersion law of 

current carriers in 2D systems.  

In our work, we consider the model of a 2D crystal 

with a simple conduction band and a quadratic dispersion 

law of electron energy. It is assumed that interaction with 

optical phonons leads to formation of large (bi)polaron 

with energy levels located near the conduction band 

bottom. 

In the problems, related with the calculations of the 

energy spectrum of localized and autolocalized states in 

condensed matter, variational methods are used. The 

development of methods for minimizing multiparameter 

energy functionals is a central part of the variational 

calculations. The variational calculations in the work 

were performed by random search methods [19] and the 

Hook–Jeeves method [20]. The variational functional 

was obtained in a simplified integral-analytical form. As 

a base system, we used Gaussian orbitals with correlation 

multipliers. 

2. The interaction energy of continuous 2D polarons 

and the configuration of BP in 2D systems 

The binding energy of BP is defined as the difference 

between the doubled energy of polaron and the energy of 

BP: 

 

∆E = 2E1 – E2,       (1) 
 

where E1 is the energy of polaron, E2 – energy of BP. 

A bound state corresponds to a positive binding 

energy. 

2.1.Hamiltonian and the energy functional of polaron 

The Hamiltonian of polaron in a 2D system is defined by 

the expression: 
 

2

1 1 1*2
ph e phH H H

m
     , (2) 

 

where m
*
 is the effective mass of band electron, Δ1 – 2D 

Laplace operators of electron with the coordinate r1; 

Hph – Hamiltonian of the phonon field: 
 

phH a a  k k k

k

, (3) 

 

where ωk and k are the frequency and wave vector of 

optical phonons; 

ka  and 
ka  are operators of creation and 

annihilation of phonons with the wave vector k; in what 

follows, we consider optical phonons without dispersion 

ωk = ω; H1e-ph is the Hamiltonian of electron-phonon 

interaction: 
 

  1 1exp . .e phH V i a H c

    k k

k

kr , (4) 

where (in the dimensionless units m
*
 = 1, ћ = 1, ω = 1) 

2
V

Sk




k
– parameter of the electron-phonon 

interaction, 
21

2

e



 – dimensionless constant of the 

electron-phonon coupling, ε~ – effective dielectric 

constant defined by the expression 
1 1 1

0    

  , ε∞ 

and ε0 are high-frequency and a static dielectric constant, 

respectively; S is a crystal area. 

We choose the polaron wave function (WF) as: 

 

*

1( ) 0 ( ),p k k k k

k

r exp f a f a r 
    

 
  (5) 

where fk is a variational function, |0 – WF of photon 

vacuum and 1(r) – electron WF. 

Electron WF is chosen in the form: 
 

2

1 1 1

1

( ) ( ),
N

i i

i

r C exp a r


  
 (6) 

 

where Ci, ai are variational parameters. 

Further, we set ћ = 1, m
*
 = 1, e

*2
 = e2/ε∞ = 1. The 

effective atomic unit of energy is defined by the value 

Eh
*
 = ћ

2
/m

*
a

*2
 (effective Hartree energy), the effective 

atomic unit of length a
*
 = ε∞ћ

2
/m

*
e

2
 (effective Bohr 

radius) is introduced. 

In the adiabatic approximation the energy functional 

of polaron in a 2D crystal is defined by the expression: 

 

1 1 1

1 1 1

1

/ph

kin pot

T J N
J E E

N


   ,  (7) 

 

where E1kin = T1/N1 is the average value of kinetic energy, 

E1pot = J1ph /N1
2 

– average energy due to the total 

contribution of the phonon field and electron-phonon 

interaction, N1 – normalization integral: 

 

 2

1 1 1ΨN d  r , (8) 

 

dσ1 = dx1dy1 – area element in the 2D system; 

 

   1 1 1 1 1

1
Ψ Ψ

2
T d   r r , (9) 

 

   2 2

1 1 2 12

12

1 1
Ψ Ψ ,

2
phJ d

r





   r r  (10) 

 

here, η = ε∞/ε0 determines the degree of crystal ionicity, 

dσ12 = dσ1dσ2. 

The polaron energy is found by minimizing the 

polaron energy functional (7): 

 

 
1 1

,
min

C a
E J , (11) 

where    NN aaaCCCaC ...,,,...,,, 2121 . 
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2.2.Hamiltonian and the energy functional of BP 

The Hamiltonian of a system consisting of two 2D-

electrons in the phonon field has the form: 

 

 1 2 2

12

1 1

2
b e ph phH H H

r
        , (12) 

 

where Δ1 and Δ2 are the 2D Laplace operators of the first 

and the second electrons; H2e-ph is the Hamiltonian of 

electron-phonon interaction: 

 

    2 1 2exp exp . .e phH V i i a H c

        k k

k

kr kr , (13) 

 

r1 and r2 are the coordinates of the first and the second 

electrons in the 2D system. 

We place the origin in the middle between points a 

and b. The distance between points a and b is equal to R. 

The vector R is directed along the axis OX from a to b. 

The two-center coordinate system is shown in Fig. 1. 

WF of BP is given by: 
 

 *

12 1 2Ψ 0 Ψ , ,b k k k k

k

exp f a f a R 
  

 
 r r

 (14) 

 

WF 12(r1, r1, R) of two-electron system is chosen 

in the form: 

 

 

  

12 1 2 12

2 2

1 1 2 1 2 3 2

1

Ψ , , Ψ

2
N

i i a i a b i b

i

R

C exp a r a a r




 

r r

r r ,
 (15) 

 

where the traditional notation for a two-center coordinate 

system is used: ra1 = r1 + R/2; rb2 = r2 – R/2; Ci, a1i, a2i, 

a3i are the variational parameters. 

We assume that WF (15) is symmetrized. This 

procedure can be provided by automatic symmetrization. 

For this, an even number of terms N = 2n0 is chosen.  

The terms in Eq. (15) are separated into pairs. 

Symmetrization is performed for each pair. 

Due to the fact that the Hamiltonian of BP (12) does 

not contain terms that depend on the distance R between 

the centers of the polarization wells for these two 

polarons, the parameter R can be entered only in WF 

(15). We assume that the centers of the polarization wells 

of polarons are located at the points a and b. 

The energy functional of BP in the 2D crystal is 

defined by the expression: 

 

2 12 2 2

2 2 2

2

/ph

kin pot

T J J N
J E E

N

 
   , (16) 

 

where 2
2

2

kin

T
E

N
  and 

12 2 2

2

2

/ph

pot

J N
E

J

N


  are 

kinetic and potential energy of bipolaron,  

 
 

Fig. 1. Two-center coordinate system. The centers of the 

polarons polarization wells p1 and p2 are placed at the points a 

and b. 

 

 

 

 2

2 12 1 2 12Ψ ,N d  r r , (17) 

 

    2 12 1 2 1 2 12 1 2 12

1
Ψ , Ψ ,

2
T d    r r r r , (18) 

 

 2

12 1 2

12 12

12

Ψ ,
J d

r
 

r r
. (19) 

 

V2ph /N2
2
 is the total contribution of the average values of 

the phonon field operator and the electron-phonon 

interaction operator. In the strong coupling 

approximation, after functional variation of the energy 

functional with respect to the function fk in WF (14) and 

averaging over phonon variables, J2ph is defined by the 

expression: 
 

 2

2 2

12 34 12 34

13 14 23 24

1

2

1 1 1 1
Ψ Ψ

phJ

r

R

d d
r r r



 


  

 
   

 


 (20) 

 

The total potential energy E2pot of BP is defined by 

the sum of the energy of interelectron repulsion, the 

energy caused by the electron-phonon interaction and the 

energy of the phonon field.  

The BP energy is defined as a minimum of the 

energy functional (16): 

 

 
2 2

;
min

C a
E J , (21) 

 

where  

1 2

11 12 1

21 22 2

31 32 3

,

, ,
,

, ,

, ,

N

N

N

N

C C C

a a a
C a

a a a

a a a

 
 

 
  

 
  

 is a set of variation 

parameters. 
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2.3. Simplified expressions for various contributions to 

the energy functional of BP 

All integral expressions that are part of the BP functional 

can be reduced to analytical expressions (the kinetic 

energy), or significantly simplified (components of 

potential energy) by calculating the integrals in the 

Cartesian coordinates. 

WF (15) can be converted to a more convenient 

form: 

   12 1 2 12 1 2

1

Ψ , , Ψ , ,
N

i

i

R R


r r r r , (22) 

 

     12 1 2 12 1 2 12 1 2Ψ , , Ψ , Ψ ,i xi a b yiR x x y yr r
 

 (23) 
 

2 2

12 1 2 1 1 2 1 2 3 2( , ) ( 2 ),xi a b i i a i a b i bx x C exp a x a x x a x    
 

 (24) 

where xa1 = x1 + R/2; xb2 = x2 – R/2; 
 

   2 2

12 1 2 1 1 2 1 2 3 2Ψ , 2yi i i iy y exp a y a y y a y    . (25) 

 

WF (24) can be represented in an equivalent form: 
 

12 1 2 12 1 2

2 2

1 1 2 1 2 3 2 4 1 5 2

( , ) ( , , )

( 2 2 2 ),

xi a b xi

i i i i i i

x x x x R

C exp a x a x x a x a x a x

   

     
 

 (26) 

where 

  2

1 2 3exp 0.25 2i i i i iC C a a a R       , (27) 

 

 4 1 20.5i i ia a a R   ,  5 3 20.5i i ia a a R  . (28) 

 

The normalization integral is defined by the 

expression: 
 

2

, 1

( )
N

ij

i j

N R N


 , (29) 

 

 2 2

1exp / /ij ij ij ij ij ijN A      
  , (30) 

 

2

i j

ij

ij

C C
A





 
 , (31) 

 

where simplified designations are introduced: 
 

αij = a1i + a1j, βij = a2i + a2j, γij = a3i + a3j,   (32) 
 

ζij = αij·γij – βij
2
, ξij = a4i + a4j, θij = a5i + a5j,  (33) 

 

where the parameters a4i and a5i are defined by the 

expression (28); 
 

μ1ij = θij·αij – ξij·βij, μ2ij = ξij·γij – θij·βij.  (34) 
 

The kinetic energy can be represented in an 

analytical form by the following expressions: 
 

 2 2

, 1

N

ij

i j

T R T


 , (35) 

 

 

 

 

 

 

2 4 4 5 5

1 1 2 2

1 2 2 1 3 2 2 3

3 3 2 2

1 4 4 1 2 5 5 2

3 5 5 3 2 4 4 2

2

2

2

ij i j i j ij

i j i j

i j i j i j i j

i j i j

i j i j i j i j

i j i j i j i j

T a a a a N

a a a a N

a a a a a a a a N

a a a a N

a a a a a a a a N

a a a a a a a a N











  



  

 

  

 







  (36) 

 

2 2

2

2 2 2 2

2 ij ij ij ij ij ij

ij ij

ij ij ij ij ij ij

N N

     


     


   
  
 



  

, 

 
3 2 2

2

2
2

ij ij ij ij ij ij ij

ij ij

ij ij ij ij ij ij ij ij ij ij

N N

      


         


    
 
   



 , 

 
2 2

2

2 2 2 2

2ij ij ij ij ij ij

ij ij

ij ij ij ij ij ij

N N

     


     


  
  
   

, 

 
1

22 ij ij ijN N    ,
1

1  2 ij ij ijN N    . 

 

The average value of the Coulomb repulsion of 

electrons has the form: 

 

 12 12

, 1

N

ij

i j

J R J


 , (37) 

 

12

12

12 12

1
0.5

ijij

ij

ij ij

pN
J f

q q

 
 
  
 

, (38) 

 

 12 0.25 2ij ij ij ij ijq       ,  12 2 1 /ij ij ij ijp     , 

 

where parameters μ1ij and μ2ij are defined by the 

expressions (34); 

 

 
 2 21

2
0

exp

1

b t
f b dt

t





 . (39) 

 

The average value of the total contribution of the 

phonon field and electron-phonon interaction has the 

form: 
 

 2 2  

, . . 1

( 1)
N

ph ph ijkl

i j k l

J R J


  
 (40) 

 

1 2

2  

1 2 1 2

  1
2 0.5

ij klij kl

ph ijkl

ij kl ij kl

p pN N
J f

q q q q

 
 
   
   (41) 

 

where 
1 0.25 /ij ij ijq   , 

2 0.25 /ij ij ijq   , 

1 20.25 /ij ij ijp   , 
2 10.25 /ij ij ijp   . 
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2.4. Paired interaction potential of 2D polarons 

The calculations of the two-polaron system energy for 

the distance between the centers of polarization wells 

were performed for WFs of various flexibility. We 

choose WFs for the N = 2 in Eq. (15) in the following 

cases: 

 

a1i = a3i, a2i = 0,      (42) 
 

a1i ≠ a3i, a2i = 0,     (43) 
 

a1i = a3i, a2i ≠ 0,      (44) 
 

a1i ≠ a3i, a2i ≠ 0.     (45) 

 

Fig. 2 shows the dependences of two polarons 

energy on the distance between them. As WF flexibility 

increases, the two-center configuration (curve (1)) 

becomes energetically disadvantageous. The most 

flexible wave function with parameters (45) corresponds 

to a single-center configuration (curve (4)). 

Figs 3 and 4 show the dependence of the energy of 

BP Е2 on the distance between polarons for the 

parameters defined by Eqs (42) and (45), respectively, 

η = 0. The same figures show the corresponding 

dependences of the kinetic energy E2kin of BP taken with 

the opposite sign and half of the potential energy E2pot. At 

the points corresponding to the minimum of energy 

functional, the virial theorem is satisfied: 

 

E2kin = –E2, E2pot = 2E2,   (46) 

 

where E2 is the ground state energy, E2kin – kinetic 

energy, E2pot – potential energy of BP.  

For the two-center configuration shown in Fig. 3, 

the virial theorem is fulfilled in 3 points: for R = 0, 

R = Rm and R = ∞. At the points R = 0 and R = ∞, 

correlation effects are absent, and BP decays into two 

polarons. For one-center configuration (Fig. 4), the virial 

theorem holds for R = 0 and R = ∞. The only deep 

minimum corresponds to R = 0. For R = ∞, BP breaks up 

into two polarons. 

An increase in the number of terms in WF (15) does 

not lead to qualitative changes in the behavior of the 

dependences of the BP energy on the distance between 

polarons. However, the energy minimum at the point 

R = 0 can be significantly reduced.  

The best values of E2 were obtained by us for WF 

(15), which is the sum of 5 independent terms, i.e. for 

N = 2n0, n0 = 5. Further increase of N did not affect the 

value of the energy minimum. The energy value of BP 

for WF (15) for n0 = 5 and η = 0 is E2 = –0.542169 Eh
*
. 

Polaron WF was chosen as the sum of Gaussian 

exponents (6). Variational calculations of the polaron 

energy performed using the variational method with WF 

(6) and N = 5, for η = 0 gave the following value: 

 

E1 = –0.202366.     (47) 

 

 
 
Fig. 2. Dependences of the interaction energy of two 2D 

polarons on the distance between the centers of the polarization 

wells for η = 0. The curves (1) to (4) correspond to the 

parameters (42)–(45), respectively. The horizontal curve 

corresponds to twice the polaron energy calculated in the same 

approximation. The unit of energy is the effective Hartree 

energy Eh
* = ћ2/m*a*2, the unit of length is the effective Bohr 

radius a* = ε∞ћ2/m*e2. 

 

 

 
 

Fig. 3. Dependence of 2D BP energy on the distance between 

polarons for the case a1i = a3i, a2i = 0. E2 is the energy of BP, 

E2kin – kinetic energy, E2pot – potential energy representing the 

sum of the Coulomb repulsion energy, the electron-phonon 

interaction energy and phonon contribution energy. The unit of 

energy is the effective Hartree energy Eh
* = ћ2/m*a*2, the unit of 

length – effective Bohr radius a* = ε∞ћ2/m*e2. 

 

 
 

Conversion of 2D polaron energy for an arbitrary η 

should be performed according to the formula: 

 

 
2

1 0.202366 1E    .    (48) 

 

Fig. 5 shows the dependence of the BP energy E2 

and the double polaron energy E1 on the ionicity 

parameter η. For η = ηc ≈ 0.2 the BP binding energy 

∆E2 = 2E1 – E2 becomes zero. 
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Fig. 4. Dependences of the energy E2 for interaction between 

two 2D polarons on the distance between the centers of the 

polarization wells for the case a1i ≠ a3i, a2i ≠ 0. E2kin is the 

kinetic energy, E2pot – potential energy. The unit of energy is the 

effective Hartree energy Eh
* = ћ2/m*a*2, the unit of length is the 

effective Bohr radius a* = ε∞ћ2/m*e2. 

 

 

 
 
Fig. 5. Dependences of the BP energy E2 and the double 

polaron energy 2E1 on the parameter of ionicity η. The unit of 

energy is the effective Hartree energy Eh* = ћ2/m*a*2. 

 

3. Discussion of the obtained results 

For comparison, we give the energy values calculated in 

[15] for single-center 2D BP by using other WFs: 

 

     2 2 2 2 2

1 2 1 2 12, 1Aexp r r r     r r , γ > 0, (49) 

 

       2 2 2 2 2

1 2 1 2 12, 1Aexp r r bexp r     r r , 

γ > 0, b < 1, (50) 

 
where A is the normalization factor; α, γ, δ and b are the 

variation parameters. 

The BP energy obtained using WFs (50) and (51) 

for η = 0 was –0.49087 Eh
*
 and –0.50658 Eh

*
, 

respectively, which is higher than our results. 

The dependences of the 2D polarons interaction 

energy, taking into account all types of electronic 

correlations, on the distance between polarons were 

obtained by us for the first time. 2D BP forms a bound 

state in the configuration corresponding to a single-center 

BP (helium atom configuration). The two-center 

configuration of BP in 2D crystals can be realized only 

for the case of a system consisting of two impurity 

centers. This system can be considered as a hydrogen 

molecule placed into the phonon field. The paper does 

not provide examples of numerical calculation of 

energies of such system. However, the analytical 

expressions for the kinetic energy, electron repulsion 

energy through the Coulomb interaction and the electron 

attraction energy due to electron-phonon interaction and 

the phonon field do not change for an exchange-coupled 

pair of shallow impurities interacting with optical 

phonons. 

In 2D systems, the spatial configuration of 

bipolaron is similar to the configuration of the two-

dimensional helium atom. The one-center configuration 

of bipolaron is also realized in three-dimensional (3D) 

crystals [21, 22]. The two-center configuration in 3D 

crystals, as well as in 2D systems, corresponds to a 

shallow minimum, which disappears when sufficiently 

flexible WF is chosen. The decisive factor in this case is 

consideration of interelectronic correlations associated 

with the direct dependence of polaron WF on the 

distance between electrons. At the same time, in one-

dimensional crystals, both one-center and two-center 

configurations of bipolaron can coexist [23, 24]. 
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Енергія взаємодії поляронів та просторова конфігурація біполярону в двовимірних 

системах 

Н.І. Каширіна, Я.О. Каширіна, О.А. Король, О.С. Рoїk 

Анотація. Метою роботи є вивчення впливу кореляційних ефектів на енергію взаємодії двовимірних (2D) 

поляронів. Двоцентрова конфігурація 2D-біполярону відповідає мілкому побічному мінімуму, який виникає 

тоді, коли враховуються лише кореляції, пов’язані з перестановочною симетрією системи. Кореляції, зумовлені 

прямою залежністю хвильової функції електронів від відстані між електронами, приводять до стабілізації 

одноцентрової конфігурації, а побічний мінімум, який відповідає двоцентровій конфігурації, зникає. Варіаційні 

розрахунки проводилися із застосуванням багатопараметричних гауссових функцій з кореляційними 

множниками. Енергія основного стану біполярону становить E2 = –0.542169 Eh
*
 для η = ε∞/ε0 = 0, де ε∞ і ε0 – 

високочастотна і статична діелектрична проникність кристала відповідно; Eh
*
 – ефективна енергія Хартрі. 

Енергія зв’язку біполярону була розрахована по відношенню до подвоєної енергії 2D полярону, отриманої для 

хвильової функції, що складається з 5 гауссових експонент. Енергія основного стану 2D полярону становить 

E1 = –0.202366 Eh
*
 при η = 0. Критичне значення параметра іонності η відповідає ηс ≈ 0,2. При η > ηc 2D 

біполярон розпадається на два 2D полярони. 
 

Ключові слова: 2D-полярон, 2D-біполярон, низьковимірні системи, електрон-фононна взаємодія. 

 


