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Abstract. The work is aimed at studying the influence of correlation effects on the
interaction energy of two-dimensional (2D) polarons. The two-center configuration of 2D
bipolaron corresponds to a shallow secondary minimum, which occurs when only the
correlations associated with the permutation symmetry of the system are taken into account.
The correlations associated with the direct dependence of the electron wave function on the
distance between electrons lead to stabilization of the one-center configuration, and the
secondary minimum corresponding to the two-center configuration disappears. Variational
calculations were performed using a multiparameter Gaussian functions with correlation
multipliers. The ground state energy of bipolaron is E, = —0.542169 E,,” for 5 = ¢,/e = 0,
where ¢, and ¢, are the high-frequency and static dielectric constants of the crystal,
respectively, E, is the effective Hartree energy. The binding energy of bipolaron was
calculated with respect to the double energy of 2D polaron obtained for wave function,
consisting of 5 Gaussian exponents. The ground state energy of 2D polaron is
E. =-0.202366 E," for # = 0. The critical value of the ionicity parameter # corresponds to

n.~0.2. At 5 > 5., 2D bipolaron breaks up into two 2D polarons.
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1. Introduction

Interest in bipolaron (BP) problem increased after the
discovery of the high temperature superconductivity
(HTSC) in the cuprate metal oxide compounds (MOC)
[1]. Vinetsky and Pashitsky predicted the possibility of
HTSC due to Bose condensation of BP gas long before
the discovery of the HTSC phenomenon [2]. In the same
work, the gap nature of superconductivity (SC) and
HTSC associated with Bose condensation of large radius
BPs was proved. A significant amount of work devoted
to studying BP mechanisms of SC was performed both
for small-radius BPs [3, 4] and large-radius BPs [5-8].
As known, a decrease in the system dimension leads
to a significant increase in the binding energy of low-
dimensional atoms [9, 10] and molecules [11, 12], as
well as localized and self-localized states in condensed
systems, such as shallow impurity centers and their
complexes, D— centers, polarons, and BPs [13-16].

Examples of two-dimensional systems are crystal
structures that have translational symmetry in only two
directions. In the direction perpendicular to the plane of
the crystal, the effective mass of the charge carriers is so
large that the movement in this direction can be
neglected. Two-dimensional crystals can be located on
the surface of bulk crystals or at the surface of liquid
solutions. An example of a two-dimensional crystal is the
well-known graphene [17, 18]. Conductive layers in
cuprate MOC, in which HTSC was observed, can be
considered as two-dimensional systems. An example is
the La,CuO, system, in which electrons are localized in
the CuO, layers. Two-dimensional and one-dimensional
crystals have a band structure and can be both metals and
semiconductors or dielectrics. So, pure graphene is a
two-dimensional crystal with a zero band gap. In this
case, the law of electron energy dispersion in the conduc-
tion band has a linear dependence on the wave vector
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[17]. At the same time, there are modifications of
graphene with an anomalously wide band gap [18]. Thus,
by changing the doping value or the properties of the
substrate on which the crystal was grown, it is possible to
change both the band gap and the dispersion law of
current carriers in 2D systems.

In our work, we consider the model of a 2D crystal
with a simple conduction band and a quadratic dispersion
law of electron energy. It is assumed that interaction with
optical phonons leads to formation of large (bi)polaron
with energy levels located near the conduction band
bottom.

In the problems, related with the calculations of the
energy spectrum of localized and autolocalized states in
condensed matter, variational methods are used. The
development of methods for minimizing multiparameter
energy functionals is a central part of the variational
calculations. The variational calculations in the work
were performed by random search methods [19] and the
Hook—Jeeves method [20]. The variational functional
was obtained in a simplified integral-analytical form. As
a base system, we used Gaussian orbitals with correlation
multipliers.

2. The interaction energy of continuous 2D polarons
and the configuration of BP in 2D systems

The binding energy of BP is defined as the difference
between the doubled energy of polaron and the energy of
BP:
AE = 2E; — E,, 1)
where E; is the energy of polaron, E, — energy of BP.

A bound state corresponds to a positive binding
energy.

2.1.Hamiltonian and the energy functional of polaron

The Hamiltonian of polaron in a 2D system is defined by
the expression:

h2

Hl_ Zm* A1_'_th+H1e—ph ’

)

where m” is the effective mass of band electron, A;— 2D
Laplace operators of electron with the coordinate ry;
Hon— Hamiltonian of the phonon field:

H ph = Zha)k aa, (3)
K

where wy and k are the frequency and wave vector of
optical phonons; a* and , are operators of creation and

annihilation of phonons with the wave vector k; in what
follows, we consider optical phonons without dispersion
o = @; Hiepn is the Hamiltonian of electron-phonon
interaction:

Hye g = 2 Vi {exp(-ikr )a; +H.cl, @)

where (in the dimensionless units m =1, i=1, w =1)
/ZSLK“ — parameter of the electron-phonon

k

1 &
J2 &

electron-phonon  coupling,

2
interaction, « = 1 — dimensionless constant of the

effective dielectric

s -
1_ -1 -1
=&, —&0 , &

constant defined by the expression &~
and ¢, are high-frequency and a static dielectric constant,
respectively; S is a crystal area.

We choose the polaron wave function (WF) as:

\Pp(r) = eXp[z f.a; — fk*ak:||0>\{11(r)! (5)
k
where fi is a variational function, |0) — WF of photon
vacuum and W,(r) — electron WF.
Electron WF is chosen in the form:

\Pl(rl) = ZN:CieXp(_ai r12)v
©)

where C;, a; are variational parameters.

Further, we set 7=1, m =1, e?=eyz,=1. The
effective atomic unit of energy is defined by the value
E, = h*m'a™ (effective Hartree energy), the effective
atomic unit of length a =&, /i/m’e* (effective Bohr
radius) is introduced.

In the adiabatic approximation the energy functional
of polaron in a 2D crystal is defined by the expression:

T+ 5 /N,
N

=E, . +E

1kin 1pot !

J = (7

1

where Eqin = T1/Ny is the average value of kinetic energy,
Elpotleph/Nl2 — average energy due to the total
contribution of the phonon field and electron-phonon
interaction, N; — normalization integral:

N, = [¥*(r,)do; . (8)
doy = dx,dy, — area element in the 2D system;

Tl=—%f\y(rl)Aqu(rl)dal, 9)
Jom :_1‘7’7 (I ‘Pz(rl)é‘llz(rz)dalz, (10)

here, # = &./&, determines the degree of crystal ionicity,
d0'12 = dﬂldﬂg.

The polaron energy is found by minimizing the
polaron energy functional (7):

(11)

where {C,a}={C,,C,,...Cy,a,8,,...ay }.
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2.2.Hamiltonian and the energy functional of BP

The Hamiltonian of a system consisting of two 2D-
electrons in the phonon field has the form:

1 1
H, _E(A1+A2)+r_+ H

12

ntHo (12)

2e—pl

where A; and A, are the 2D Laplace operators of the first
and the second electrons; Hae.pn is the Hamiltonian of
electron-phonon interaction:

Hoo o =D Vi {[exp(—ikr1)+exp(—ikr2)] a; + H.c.} , (13)

r, and r, are the coordinates of the first and the second
electrons in the 2D system.

We place the origin in the middle between points a
and b. The distance between points a and b is equal to R.
The vector R is directed along the axis OX from a to b.
The two-center coordinate system is shown in Fig. 1.

WEF of BP is given by:

P, :exp[kaak* - fk*ak}|0>‘1’12(rl,r2,R) (14)
k

WF Wi,(ry, r1, R) of two-electron system is chosen
in the form:

\Plz(rl’rZ’R):lylz =

ZcieXp (_ali ra21 - 2a2i (ral T2 ) — 8y rbzz) , (15)
i=1

where the traditional notation for a two-center coordinate
system is used: ry; = r; + R/2; ry, = ry — R/2; G, &y, asi,
ag; are the variational parameters.

We assume that WF (15) is symmetrized. This
procedure can be provided by automatic symmetrization.
For this, an even number of terms N = 2ny is chosen.
The terms in EQ.(15) are separated into pairs.
Symmetrization is performed for each pair.

Due to the fact that the Hamiltonian of BP (12) does
not contain terms that depend on the distance R between
the centers of the polarization wells for these two
polarons, the parameter R can be entered only in WF
(15). We assume that the centers of the polarization wells
of polarons are located at the points a and b.

The energy functional of BP in the 2D crystal is
defined by the expression:

3 :T2+JlZ+J2ph/N2

) =E,., +E
NZ

2kin

(16)

2pot !

3,3 N,

2pot N
2

i

where E and E are

2kin
2

kinetic and potential energy of bipolaron,

AY
(5]
€5
- 12—
Fp2 ;rﬂl oy
Fa2 Iz
a 0 b %
A R/2 R/2 I X

Fig. 1. Two-center coordinate system. The centers of the
polarons polarization wells p, and p, are placed at the points a
and b.

N, =J‘P122(r1,r2)d0'12 ' 4
1
T == a(hn) (A48, ¥u (0r)don
2
12

Vaoh IN,? is the total contribution of the average values of
the phonon field operator and the electron-phonon
interaction  operator. In the strong coupling
approximation, after functional variation of the energy
functional with respect to the function f, in WF (14) and
averaging over phonon variables, Ja, is defined by the
expression:

1-n
‘]th (R) = 2
(20)
”q@[A+i+i+ijw;4d%d%
rlS r14 rZS r-24

The total potential energy Eape: of BP is defined by
the sum of the energy of interelectron repulsion, the
energy caused by the electron-phonon interaction and the
energy of the phonon field.

The BP energy is defined as a minimum of the
energy functional (16):

E,= ?g'ar; s, (21)
C.C,...C,

where {C,a}= e B L e o et of variation
8185,y
a31’a32""a'3N

parameters.
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2.3. Simplified expressions for various contributions to
the energy functional of BP

All integral expressions that are part of the BP functional
can be reduced to analytical expressions (the kinetic
energy), or significantly simplified (components of
potential energy) by calculating the integrals in the
Cartesian coordinates.

WF (15) can be converted to a more convenient
form:

N
\Plz(rlarz’R):Z\Plzi(rlarzsR) s (22)
=
lI112i (rl r,, R) = lI"12><i (Xav X2 )\Plzyi ( Y- Y2 )
(23)
Wioi (Xas X%2) = Ciexp(—ay, Xa12 — 28 Xy Xy — 8 Xb22 )
(24)

where Xa; = X; + R/2; Xpp = X, — R/2;
iy (Y1>y2) :eXp(_a1i 3/12 —2a, V.Y, _aSiyZZ)' (25)
WF (24) can be represented in an equivalent form:

lI’12xi (Xal’ sz) = lPlei (X:I.’ X5 R) =
Ci'exp(_alixlz — 28, %X, — &y X22 +2a,,X, + 235%,),

(26)

where
C/ =Cyexp| -0.25(a, —2a, +a, )R |, @7)
a,; :_O'S(aii _azi)R' a5 20-5(a3i _azi)R ' (28)

The normalization integral is defined by the
expression:

N
NZ(R):ZNU ) (29)
i, j=1
Nij = AjEXp[(/‘ﬁzij /é’ij +§ij2)/aij , (30)
A, =25 (31)
I] é/ij !

where simplified designations are introduced:
oij = agi + ay, fij = @i + ayj, 7ij = asi + ag;, (32)
Gy =ayyi— B &= i+ g, 0 = a5 + ag, (33)

where the parameters a; and as; are defined by the
expression (28);

Qzuﬁu M2ij = ézuyu Hlj'ﬂij- (34)

The kinetic energy can be represented in an
analytical form by the following expressions:

Miij = elj Gij —

T, (R) = ZN:TZU , (35)

ij=1

Kashirina N.1.,

Ty = 2(a,a,; +agaq; )N; -
2(aya,; +a,a,; )N, -
(aya,; +aya,; +a8,; +a,3, )N, -
2(aya,; +a,a,; )N, -

(aa,; +a,a,; +a,a +aga,; )N

=
(aSiaSj + 8583 + 8,8y +a4ia2j)N9 (36)
2 52
N =N &2 —20,&,Bivy + 65 By +
‘ e é:uz?/.f _7ijﬂij2 +7iJ?aij

_ﬂi?_é:ijﬂijz ij é:uﬁu?/u
Bvi +‘9uzauﬁlj_0ijaij§ij7ij '

2 n2
N, = —N, &2 Si By =28, By 00 +
! Y 9|12 ”2 aijﬂijz +7/ijai]?

-2
N, =2N;g; (

N, = 2Ny 26,50 Ny = 2N 50

The average value of the Coulomb repulsion of
electrons has the form:

Z‘leu ) (37)
i,j=1
le“ = . i fl 0.5 |p12ij|
J \[|Q12ij| Jz |q12ij| ' (38)

Opij = 0-25(% +2:Bij +7%i )/é’u v Prayj = ('uZij — Hhjj ) 1S5,

where parameters ug;; and uy; are defined by the
expressions (34);

L (39)
° —

The average value of the total contribution of the
phonon field and electron-phonon interaction has the
form:

th( (77 1) z ‘]thukl

i,j.kl=1 (40)
_ - f 0 5 |pllj p2kl|
2phuk| -
«é qlu + qZkI \/_ qlu q2k|| (41)
where Ouij :0-257ij /gij ' Ay = 0'25aij /gij '

Puj =0.252,5 1 &+ Py =0.250 1 -
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2.4. Paired interaction potential of 2D polarons

The calculations of the two-polaron system energy for
the distance between the centers of polarization wells
were performed for WFs of various flexibility. We
choose WFs for the N=2 in Eqg. (15) in the following
cases:

i = ag;, A = 0, (42)
i # azi, 8 =0, (43)
i = ag;, A # 0, (44)
ayi# agi, & # 0. (45)

Fig. 2 shows the dependences of two polarons
energy on the distance between them. As WF flexibility
increases, the two-center configuration (curve (1))
becomes energetically disadvantageous. The most
flexible wave function with parameters (45) corresponds
to a single-center configuration (curve (4)).

Figs 3 and 4 show the dependence of the energy of
BP E, on the distance between polarons for the
parameters defined by Eqs (42) and (45), respectively,
n=0. The same figures show the corresponding
dependences of the kinetic energy E, of BP taken with
the opposite sign and half of the potential energy Egpe. At
the points corresponding to the minimum of energy
functional, the virial theorem is satisfied:

Eoxin = —Eo, Eopot = 2E;, (46)
where E, is the ground state energy, Euxin — Kinetic
energy, Eqye— potential energy of BP.

For the two-center configuration shown in Fig. 3,
the virial theorem is fulfilled in 3 points: for R =0,
R=R, and R=oc0. At the points R=0 and R =0,
correlation effects are absent, and BP decays into two
polarons. For one-center configuration (Fig. 4), the virial
theorem holds for R=0 and R=o. The only deep
minimum corresponds to R = 0. For R = co, BP breaks up
into two polarons.

An increase in the number of terms in WF (15) does
not lead to qualitative changes in the behavior of the
dependences of the BP energy on the distance between
polarons. However, the energy minimum at the point
R = 0 can be significantly reduced.

The best values of E, were obtained by us for WF
(15), which is the sum of 5 independent terms, i.e. for
N =2ng, ng = 5. Further increase of N did not affect the
value of the energy minimum. The energy value of BP
for WF (15) for no =5 and # = 0 is E, = —0.542169 E,,".

Polaron WF was chosen as the sum of Gaussian
exponents (6). Variational calculations of the polaron
energy performed using the variational method with WF
(6) and N =5, for # = 0 gave the following value:

E, = -0.202366. (47)

-0.38 -
-0.40 - (N T
~0.42 4 // \\\ /
) ,

P2 \\, S/
-0.44 P

3 -
-0.46 -

(4)
-0.48 -

0 2 s, 6 8

R

Fig. 2. Dependences of the interaction energy of two 2D
polarons on the distance between the centers of the polarization
wells for #=0. The curves (1) to (4) correspond to the
parameters (42)—(45), respectively. The horizontal curve
corresponds to twice the polaron energy calculated in the same
approximation. The unit of energy is the effective Hartree
energy E," = #%/m"a"?, the unit of length is the effective Bohr
radius a” = ¢,/i2/m"e%.

-0.34 1
-0.36 1

-0.38 1

040§
E
0.42

-0.44

-0.46

-0.48 1

0

Fig. 3. Dependence of 2D BP energy on the distance between
polarons for the case a;; = ag;, a5 = 0. E; is the energy of BP,
Eouin — Kinetic energy, Epyo — potential energy representing the
sum of the Coulomb repulsion energy, the electron-phonon
interaction energy and phonon contribution energy. The unit of
energy is the effective Hartree energy E,” = #%/ma”2, the unit of
length — effective Bohr radius a” = &,./4%/m"e’.

Conversion of 2D polaron energy for an arbitrary #
should be performed according to the formula:

E, =-0.202366(1-7)" - (48)

Fig. 5 shows the dependence of the BP energy E,
and the double polaron energy E; on the ionicity
parameter n. For n = . = 0.2 the BP binding energy
AE, = 2E; — E, becomes zero.
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0464 /)
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Fig. 4. Dependences of the energy E, for interaction between
two 2D polarons on the distance between the centers of the
polarization wells for the case a;; # asj, asx # 0. Eyqy is the
kinetic energy, E,p— potential energy. The unit of energy is the
effective Hartree energy E,," = #%/m"a™, the unit of length is the
effective Bohr radius a” = ¢,./4%/m"e.
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-0.30—-
-0_35—-
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70_45-‘
-0,50—_

20554

0.10 0.15
n

0.00

Fig. 5. Dependences of the BP energy E, and the double
polaron energy 2E; on the parameter of ionicity #. The unit of
energy is the effective Hartree energy E,* = #%m"a™.

3. Discussion of the obtained results

For comparison, we give the energy values calculated in
[15] for single-center 2D BP by using other WFs:

p(n.r,)= Aexp(—52 (l’l2 +r; ))(1+ 7é'zré) ,7>0, (49)
o5, = Ao 07+ bp 1)
y>0,b<1, (50)

where A is the normalization factor; a, v, 6 and b are the
variation parameters.

The BP energy obtained using WFs (50) and (51)
for =0 was -0.49087E, and -0.50658E,",
respectively, which is higher than our results.

The dependences of the 2D polarons interaction
energy, taking into account all types of electronic
correlations, on the distance between polarons were
obtained by us for the first time. 2D BP forms a bound
state in the configuration corresponding to a single-center
BP (helium atom configuration). The two-center
configuration of BP in 2D crystals can be realized only
for the case of a system consisting of two impurity
centers. This system can be considered as a hydrogen
molecule placed into the phonon field. The paper does
not provide examples of numerical calculation of
energies of such system. However, the analytical
expressions for the kinetic energy, electron repulsion
energy through the Coulomb interaction and the electron
attraction energy due to electron-phonon interaction and
the phonon field do not change for an exchange-coupled
pair of shallow impurities interacting with optical
phonons.

In 2D systems, the spatial configuration of
bipolaron is similar to the configuration of the two-
dimensional helium atom. The one-center configuration
of bipolaron is also realized in three-dimensional (3D)
crystals [21, 22]. The two-center configuration in 3D
crystals, as well as in 2D systems, corresponds to a
shallow minimum, which disappears when sufficiently
flexible WF is chosen. The decisive factor in this case is
consideration of interelectronic correlations associated
with the direct dependence of polaron WF on the
distance between electrons. At the same time, in one-
dimensional crystals, both one-center and two-center
configurations of bipolaron can coexist [23, 24].
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Eneprist B3aemoii noJsipoHiB Ta npocTopoBa KoH(pirypauisi 0inoisipoHy B ABOBUMIpPHHX
cucreMax

H.I. Kammpina, 51.0. Kamupina, O.A. Kopous, O.C. Poik

AHoTanis. MeTolo poOOTH € BHBYEHHS BIUIMBY KOpEISLIMHUX e(eKTiB Ha eHepriro B3aeMojii nBoBuMipHHX (2D)
noJspoHiB. J[BoreHTpoBa KoH}irypauiss 2D-0inoyspoHy BigNOBiae MUIKOMY MOOIYHOMY MIHIMyMYy, SIKUil BUHHKAE
TOJIi, KOJIM BPAaXOBYIOTBCS JIMIIIE KOPEJIALii, OB’ A3aH] 3 IepecTaHOBOYHOIO CUMeTpieto cuctemu. Kopesiuii, 3yMoBieHi
NPSIMOIO 3aJISKHICTIO XBHJIbOBOI (PYHKILIi €JeKTpPOHIB BiJ BIACTaHI MiX €JIEKTPOHAMH, NMPUBOIATH 1O crabimizamil
OJTHOLIEHTPOBOI KOH]Iryparii, a moOiYHni MiHIMYM, KU BiAIIOBiTa€E ABOICHTPOBIH KOHDIrypamii, 3HIKae. Bapiamiiiai
PO3paxyHKH MPOBOIMINCS 13 3aCTOCYBaHHSAM OaraTomapaMeTpHYHUX TayCcCOBHX (YHKIIH 3 KOpeamiiHIMH
MHOKHHKaMH. EHeprisi OCHOBHOTO CTaHy 6imoisipoHy cTaHOBHTB E, = —0.542169 E;, st 1 = e./ep =0, 1€ &, i g —
BHCOKOYACTOTHA i CTATHYHA JieJeKTPHYHA TPOHMKHICTH KpWCTama BimmoBimmo; E, — edexrnBHa emepris Xaprpi.
Enepris 38’s13Ky OinonsapoHy Oyna po3paxoBaHa IO BiTHOIICHHIO 0 MOABOEHOI eHeprii 2D momspony, oTpuMaHoi s
XBHJIBOBOI (DYHKIIII, IO CKIAJAETHCS 3 5 TaycCOBUX eKCHOHEHT. EHepris ocHOBHOTrO craHy 2D monsipoHy CTaHOBHUTH
E,=-0.202366 E, npu n =0. Kpuruuse 3HAaYeHHs mapameTpa iOHHOCTI 1M Biamosimae m.=~0,2. Ilpu n>n, 2D
OIMOJIAPOH PO3MAaaaeThCs Ha aBa 2D MOISIpOHH.

Karouogi ciioBa: 2D-nosnsipoH, 2D-6inossipoH, HU3bKOBUMIPHI CHCTEMH, EIEKTPOH-(OHOHHA B3aEMO/IIS.
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