Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (3) P. 241-247 (2021).
DOI: https://doi.org/10.15407/spqeo24.03.241


References

1. Kim T., Song W., Son D.-Y., Ono L.K., Qi Y. Lithium-ionbatteries: outlook on present, future, and hybridized technologies. J. Mater. Chem. A. 2019. 7. P. 2942-2964. https://doi.org/10.1039/C8TA10513H

2. Miao Y., Hynan P., Jouannevon A., Yokochi A. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies. 2019. 12. P. 1074. https://doi.org/10.3390/en12061074

3. Ohno S., Banik A., Dewald G.F. et al. Materials design of ionic conductors for solid state batteries. Prog. Energy. 2020. 2. P. 022001. https://doi.org/10.1088/2516-1083/ab73dd

4. Grey C.P., Hall D.S. Prospects for lithium-ion batteries and beyond - a 2030 vision. Nat. Commun. 2020. 11. P. 6279. https://doi.org/10.1038/s41467-020-19991-4

5. Duan J., Tang X., Dai H. et al. Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energ. Rev. 2020. 3. P. 1-42. https://doi.org/10.1007/s41918-019-00060-4

6. Chen Y., Wen K., Chen T. et al. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Mater. 2020. 31. P. 401- 433. https://doi.org/10.1016/j.ensm.2020.05.019

7. Reddy M.V., Julien C.M., Mauger A., Zaghib K. Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: A review. Nanomaterials. 2020. 10. P. 1606. https://doi.org/10.3390/nano10081606

8. Kuhs W.F., Nitsche R., Scheunemann K. The argyrodites - a new family of tetrahedrally closepacked structures. Mat. Res. Bull. 1979. 14. P. 241- 248. https://doi.org/10.1016/0025-5408(79)90125-9

9. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure - property relations of high temperature ion conductors. Z. Kristallogr. 2005. 220. P. 281-294. https://doi.org/10.1524/zkri.220.2.281.59142

10. Laqibi M., Cros B., Peytavin S., Ribes M. New silver superionic conductors Ag7XY5Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I)-synthesis and electrical studies. Solid State Ionics. 1987. 23, No 1-2. P. 21- 26. https://doi.org/10.1016/0167-2738(87)90077-4

11. Deiseroth H.-J., Maier J., Weichert K. et al. Li7PS6 and Li6PS5X (X: Cl, Br, I): possible threedimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements. Z. Anorg. Allg. Chem. 2011. 637. P. 1287-1294. https://doi.org/10.1002/zaac.201100158

12. Haznar A., Pietraszko A., Studenyak I.P. X-ray study of the superionic phase transition in Cu6PS5Br. Solid State Ionics. 1999. 119, No 1-4. P. 31-36. https://doi.org/10.1016/S0167-2738(98)00479-2

13. Fan Y., Wang G., Wang R. et al. Enhanced thermoelectric properties of p-type argyrodites Cu8GeS6 through Cu vacancy. J. Alloys and Compd. 2020. 822. P. 153665. https://doi.org/10.1016/j.jallcom.2020.153665

14. Beeken R.B., Garbe J.J., Gillis J.M. et al. Electrical conductivities of the Ag6PS5X and the Cu6PSe5X (X = Br, I) argyrodites. J. Phys. Chem. Solids. 2005. 66, No 5. P. 882-886. https://doi.org/10.1016/j.jpcs.2004.10.010

15. Studenyak I.P., Kranjcec M., Bilanchuk V.V. et al. Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor. J. Phys. Chem. Solids. 2009. 70. P. 1478- 1481. https://doi.org/10.1016/j.jpcs.2009.09.003

16. Orliukas A.F., Kazakevicius E., Kezionis A. et al. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites. Solid State Ionics. 2009. 180, No 2-3. P. 183-186. https://doi.org/10.1016/j.ssi.2008.12.005

17. Studenyak I.P., Izai V.Yu., Studenyak V.I. et al. Influence of Cu6PS5² superionic nanoparticles on the dielectric properties of 6ÑÂ liquid crystal. Liquid Crystals. 2017. 44, No 5. P. 897-903. https://doi.org/10.1080/02678292.2016.1254288

18. Salkus T., Kazakevicius E., Banys J. et al. Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics. Solid State Ionics. 2014. 262. P. 597-600. https://doi.org/10.1016/j.ssi.2013.10.040

19. Studenyak I.P., Kranjcec M., Izai V.Yu. et al. Structural and temperature-related disordering studies of Cu6PS5I amorphous thin films. Thin Solid Films. 2012. 520, No 6. P. 1729-1733. https://doi.org/10.1016/j.tsf.2011.08.043

20. Studenyak I.P., Kranjcec M., Kovacs Gy.S. et al. The excitonic processes and Urbach rule in Cu6P(S1?xSex)5I crystals in the sulfur-rich region. Mat. Res. Bull. 2001. 36, No 1-2. P. 123-135. https://doi.org/10.1016/S0025-5408(01)00508-6

21. Kranjcec M., Studenyak I.P., Kurik M.V. Urbach rule and disordering processes in Cu6P(S1?xSex)5Br1?yIy superionic conductors. J. Phys. Chem. Solids. 2006. 67, No 4. P. 807-817. https://doi.org/10.1016/j.jpcs.2005.10.184

22. Kraft Ì.A., Ohno S., Zinkevich T. et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1?xGexS5I for all-solid-state batteries. J. Am. Chem. Soc. 2018. 140. P. 16330- 16339. https://doi.org/10.1021/jacs.8b10282

23. Pogodin A.I., Filep M.J., Malakhovska T.O. et al. The copper argyrodites Cu7-nPS6-nBrn: Crystal growth, structures and ionic conductivity. Solid State Ionics. 2019. 341. 115023. https://doi.org/10.1016/j.ssi.2019.115023

24. Adeli P., Bazak J.D., Park K.H. et al. Boosting solid state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 2019. 58. P. 8681-8686. https://doi.org/10.1002/anie.201814222

25. Studenyak I.P., Izai V.Yu., Studenyak V.I. et al. Interrelations between structural and optical properties of (Cu1?õAgx)7GeS5I mixed crystals. Ukr. J. Phys. Opt. 2018. 19. P. 237-243. https://doi.org/10.3116/16091833/19/4/237/2018

26. Minafra N., Culver S.P., Krauskopf T., Senyshyn A., Zeier W.G. Effect of Si substitution on the structural and transport properties of superionic Liargyrodites. J. Mater. Chem. A. 2018. 6. P. 645- 651. https://doi.org/10.1039/C7TA08581H

27. Studenyak I.P., Pogodin A.I., Studenyak V.I. et al. Electrical properties of copper- and silvercontaining superionic (Cu1?xAgx)7SiS5I mixed crystals with argyrodite structure. Solid State Ionics. 2020. 345. P. 115183. https://doi.org/10.1016/j.ssi.2019.115183

28. Studenyak I.P., Pogodin A.I., Studenyak V.I. et al. Structure, electrical conductivity, and Raman spectra of (Cu1-xAgx)7GeS5I and (Cu1-xAgx)7GeSe5I mixed crystals. Mater. Res. Bull. 2021. 135. P. 111116. https://doi.org/10.1016/j.materresbull.2020.111116

29. Orazem M.E., Tribollet B. Electrochemical Impedance Spectroscopy. New Jersey: John Wiley & Sons, 2008. https://doi.org/10.1002/9780470381588

30. Ivanov-Schitz A.K., Murin I.V. Solid State Ionics. St.-Petersburg: Univ. Press, 2000 (in Russian)

31. Huggins R.A. Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review. Ionics. 2002. 8, No 3. P. 300-313. https://doi.org/10.1007/BF02376083