Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (3) P. 288-294 (2021).
DOI: https://doi.org/10.15407/spqeo24.03.288


References

1. Lackner P., Hulva J., Kock E.-M. et al. Water adsorption at zirconia: from the ZrO2(111)/ Pt3Zr(0001) model system to powder samples. J. Mater. Chem. A. 2018. 6. P. 17587-17601. https://doi.org/10.1039/C8TA04137G

2. Subhoni M., Kholmurodov K., Doroshkevich A. et al. Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped. J. Phys.: Conf. Series. 2018. 994, No 1. P. 012013. https://doi.org/10.1088/1742-6596/994/1/012013

3. Kogler M., Kock E.-M., Bielz T. et al. Hydrogen surface reactions and adsorption studied on Y2O3, YSZ, and ZrO2. J. Phys. Chem. C. 2014. 118, No 16. P. 8435-8444. https://doi.org/10.1021/jp5008472

4. Doroshkevich A.S., Lyubchyk A.I., Shilo A.V. et al. Chemical-electric energy conversion effect in zirconia nanopowder systems. J. Synch. Investig. 2017. 11. P. 523-529. https://doi.org/10.1134/S1027451017030053

5. Doroshkevich A.S., Lyubchyk A.I., Islamov A.K. et al. Nonequilibrium chemo-electronic conversion of water on the nanosized YSZ: experiment and molecular dynamics modelling problem formulation. J. Phys.: Conf. Series. 2017. 848, No 1. P. 12- 21. https://doi.org/10.1088/1742-6596/848/1/012021

6. Doroshkevich A.S., Asgerov E.B., Shylo A.V. et al. Direct conversion of the water adsorption energy to electricity on the surface of zirconia nanoparticles. Appl. Nanosci. 2019. 9. P. 1603-1609. https://doi.org/10.1007/s13204-019-00979-6

7. Krishna P. & Pandey D. Close-Packed Structures. International Union of Crystallography, University College Cardiff Press, Wales, 1981

8. Hales T.C. A proof of the Kepler conjecture. Annals of Mathematics. 2005. 162. P. 1065-1185. https://doi.org/10.4007/annals.2005.162.1065

9. Swarup P., Arora R. Dielectric constant of powders. Nature. 1964. 201. P. 1018. https://doi.org/10.1038/2011018a0