Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (3) P. 288-294 (2021).


1. Lackner P., Hulva J., Kock E.-M. et al. Water adsorption at zirconia: from the ZrO2(111)/ Pt3Zr(0001) model system to powder samples. J. Mater. Chem. A. 2018. 6. P. 17587-17601.

2. Subhoni M., Kholmurodov K., Doroshkevich A. et al. Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped. J. Phys.: Conf. Series. 2018. 994, No 1. P. 012013.

3. Kogler M., Kock E.-M., Bielz T. et al. Hydrogen surface reactions and adsorption studied on Y2O3, YSZ, and ZrO2. J. Phys. Chem. C. 2014. 118, No 16. P. 8435-8444.

4. Doroshkevich A.S., Lyubchyk A.I., Shilo A.V. et al. Chemical-electric energy conversion effect in zirconia nanopowder systems. J. Synch. Investig. 2017. 11. P. 523-529.

5. Doroshkevich A.S., Lyubchyk A.I., Islamov A.K. et al. Nonequilibrium chemo-electronic conversion of water on the nanosized YSZ: experiment and molecular dynamics modelling problem formulation. J. Phys.: Conf. Series. 2017. 848, No 1. P. 12- 21.

6. Doroshkevich A.S., Asgerov E.B., Shylo A.V. et al. Direct conversion of the water adsorption energy to electricity on the surface of zirconia nanoparticles. Appl. Nanosci. 2019. 9. P. 1603-1609.

7. Krishna P. & Pandey D. Close-Packed Structures. International Union of Crystallography, University College Cardiff Press, Wales, 1981

8. Hales T.C. A proof of the Kepler conjecture. Annals of Mathematics. 2005. 162. P. 1065-1185.

9. Swarup P., Arora R. Dielectric constant of powders. Nature. 1964. 201. P. 1018.