Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (3) P. 295-303 (2021).
DOI: https://doi.org/10.15407/spqeo24.03.295


References

1. Wang Z., Zhu X., Zuo S. et al. 27%-efficiency fourterminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh. Adv. Funct. Mater. 2019. 30. P. 1908298 (1-8). https://doi.org/10.1002/adfm.201908298

2. Green M.A. Commercial progress and challenges for photovoltaics. Nature Energy. 2016. 1, No 1. P. 1-4. https://doi.org/10.1038/nenergy.2015.15

3. Green M.A., Dunlop E.D., Hohl-Ebinger J. et al. Solar cell efficiency tables (version 55). Prog. Photovolt. Res. Appl. 2020. 28. P. 3-15. h https://doi.org/10.1002/pip.3228

4. Green M.A. Third Generation Photovoltaics: Advanced Solar Energy Conversion. Springer, 2003.

5. Kojima A., Teshima K., Shirai Y. et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009. 131. P. 6050-6051. https://doi.org/10.1021/ja809598r

6. Best Research-Cell Efficiency Chart, URL: https://www.nrel.gov/pv/cell-efficiency.html(accessed 15 May, 2020).

7. Zhao Y., Zhu K. Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J. Phys. Chem. Lett. 2013. 4. P. 2880- 2884. https://doi.org/10.1021/jz401527q

8. Burschka J., Pellet N., Moon S.-J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013. 499(7458). P. 316-319. https://doi.org/10.1038/nature12340

9. Park N. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015. 137, No 27. P. 8696-8699. https://doi.org/10.1021/jacs.5b04930

10. Liu M., Johnston M.B., Snaith H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 2013. 501(7467). P. 395-398. https://doi.org/10.1038/nature12509

11. Kavadiya S., Niedzwiedzki D.M., Huang S. et al. Electrospray-assisted fabrication of moistureresistant and highly stable perovskite solar cells at ambient conditions. Adv. Energy Mater. 2017. 7, No 18. P. 1700210 (1-9). https://doi.org/10.1002/aenm.201700210

12. Belous A., Kobylianska S., V'yunov O. et al. Effect of non-stoichiometry of initial reagents on morphological and structural properties of perovskites CH3NH3PbI3. Nanoscale Res. Lett. 2019. 14, No 1. P. 4. https://doi.org/10.1186/s11671-018-2841-6

13. Barnea L., Kirmayer S., Edri E., Hodes G., and Cahen D. Surface photovoltage spectroscopy study of organo-lead perovskite solar cells. J. Phys. Chem. Lett. 2014. 5, No 14. P. 2408-2413. https://doi.org/10.1021/jz501163r

14. Dittrich Th., Lang F., Shargaieva O. et al. Diffusion length of photo-generated charge carriers in layers and powders of CH3NH3PbI3 perovskite. Appl. Phys. Lett. 2016. 109. P. 073901 (1-4). https://doi.org/10.1063/1.4960641

15. Wang J., Motaharifar E., Higgins M. et al. Revealing lattice and photocarrier dynamics of high-quality MAPbBr3 single crystals by far infrared reflection and surface photovoltage spectroscopy. J. Appl. Phys. 2019. 125. P. 025706 (1-7). https://doi.org/10.1063/1.5072794

16. Kostylyov V.P., Sachenko A.V., Vlasiuk V.M. et al. Synthesis and investigation of the properties of organic-inorganic perovskite films with non-contact methods. Ukr. J. Phys. 2021. 66, No. 5. P. 429-438. https://doi.org/10.15407/ujpe66.5.429

17. Qiu J., Qiu Y., Yan K. et al. All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale. 2013. 5, No 8. P. 3245-3248. https://doi.org/10.1039/c3nr00218g

18. Belous A.G., V'yunov O.I., Kobylyanskaya S.D., Ishchenko A.A., and Kulinich A.V. Influence of synthesis conditions on the morphology and spectral-luminescent properties of films of organicinorganic perovskite CH3NH3PbI2.98Cl0.02. Rus. J. Gen. Chem. 2018. 88, No 1. P. 114-119. https://doi.org/10.1134/S1070363218010188

19. Kawamura Y., Mashiyama H., and Hasebe K. Structural study on cubic-tetragonal transition of CH3NH3PbI3. J. Phys. Soc. Jpn. 2002. 71, No 7. P. 1694-1697. https://doi.org/10.1143/JPSJ.71.1694

20. Green M.A. Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. Prog. Photovolt: Res. Appl. 2002. 10. P. 235-241. https://doi.org/10.1002/pip.404

21. Tiedje T., Yablonovitch E., Cody G.D., and Brooks B.J. Limiting efficiency of silicon solar cells. IEEE Trans. on Electron Devices. 1984. 31, No 5. P. 711- 716. https://doi.org/10.1109/T-ED.1984.21594

22. Yablonovitch E. Statistical ray optics. J. Opt. Soc. Amer. 1982. 72, No 7. P. 899-907. https://doi.org/10.1364/JOSA.72.000899

23. Mott N.F., Davis E.A. Electronic Processes in Non Crystalline Materials. Oxford Univ. Press, 1979.

24. ASTM Standard F391-90a, "Standard Test Method for Minority-Carrier Diffusion Length in Silicon by Measurement of Steady-State Surface Photovoltage," 1996 Annual Book of ASTM Standards, Am. Soc. Test. Mat., West Conshohocken, PA, 1996.

25. De Wolf S., Holovsky J., Moon So-Jin et al. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 2014. 5, No 6. P. 1035?1039. https://doi.org/10.1021/jz500279b

26. Schroder D.K. Semiconductor Material and Device Characterization. Wiley-IEEE Press, 2006. https://doi.org/10.1002/0471749095

27. Leguy A.M.A., Hu Y., Campoy-Quiles M. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Matter. 2015. 27, No 9. No 3397-3407. https://doi.org/10.1021/acs.chemmater.5b00660

28. Sachenko A.V., Kostylyov V.P., Vlasyuk V.M. et al. Peculiarities of photoconversion efficiency modeling in perovskite solar cells. Techn. Phys. Lett. 2017. 43, No 7. P. 678-680. https://doi.org/10.1134/S1063785017070240