Semiconductor Physics, Quantum Electronics and Optoelectronics, 24 (3) P. 335-340 (2021).
DOI: https://doi.org/10.15407/spqeo24.03.335
References
1. Federica P. Photonic Crystal Fiber. SpringerVerlag New York Inc., 2010.
2. Dhasarathan V., Sahu S.K., Nguyen T.K., Palai G. Realization of all logic gates using metamaterials based three dimensional photonics structures: A future application of 3D photonics to optical computing. Optik. 2019. 202. P. 163723.
https://doi.org/10.1016/j.ijleo.2019.163723
3. Guldin S., Huttner S., Kolle M. et al. Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett. 2010. 10, No 7. P. 2303-2309.
https://doi.org/10.1021/nl904017t
4. Ergin T., Stenger N., Brenner P., Pendry J.B., Wegener M. Three-dimensional invisibility cloak at optical wavelengths. Science. 2010. 328. P. 337- 339.
https://doi.org/10.1126/science.1186351
5. Biswal S.K., Palai G. 3D photonic structure vis-avis band gap analysis for realization of spectral beam combination. Optik. 2018. 166. P. 86-89.
https://doi.org/10.1016/j.ijleo.2018.03.108
6. Palai G. Theoretical approach to 3D photonic crystal structure for realization of optical mirror using bandgap analysis: a future application. Optik. 2015. 126, No 24. P. 5100-5101.
https://doi.org/10.1016/j.ijleo.2015.09.164
7. Panda A., Sarkar P., Palai G. Studies on temperature variation in semiconductor waveguide through ARDP loss for nanophotonic applications. Optik. 2016. 127, Issue 13. P. 5439-5442.
https://doi.org/10.1016/j.ijleo.2016.03.029
8. Panda A., Sarkar P., Palai G. Research on SADPRD losses in semiconductor waveguide for application in photonic integrated circuits. Optik. 2018. 154. P. 748-754.
https://doi.org/10.1016/j.ijleo.2017.10.130
9. Palai G. Realization of temperature in semiconductor using optical principle. Optik. 2014. 125, No 20. P. 6053-6057.
https://doi.org/10.1016/j.ijleo.2014.07.078
10. Mishra C.S., Palai G. Manipulating light with porous silicon for investigation of porosity using finite difference time domain method. Optik. 2016. 127. P. 1195-1197.
https://doi.org/10.1016/j.ijleo.2015.11.012
11. Palai G., Sahoo S.K. Optimization of power in SOI structure at 1550 nm for nanophotonic application. Trends Opto-Electro and Opt. Commun. 2013. 3. P. 22-24.
12. Sarkar P., Panda A., Palai G. Analysis of 90° bend photonic crystal waveguide: an application to optical interconnect. Indian J. Phys. 2019. 93, Issue 11. P. 1495-1500.
https://doi.org/10.1007/s12648-019-01425-7
13. Mohanthy S.K., Palai G., Bhanja U., Mishra C.S. A new-fangled high dimensional waveguide for multiple sensing applications using finite difference time domain method. Optik. 2018. 172. P. 861-865.
https://doi.org/10.1016/j.ijleo.2018.07.106
14. Mehdizadeh F., Soroosh M. Designing of all optical NOR gate based on photonic crystal. Indian Journal of Pure and Applied Physics. 2016. 54. P. 32-39.
15. Mishra C.S., Palai G., Prakash D. et al. Analysis of HLB pass filter using silicon photonics structure. Optik. 2017. 144. P. 522-527.
https://doi.org/10.1016/j.ijleo.2017.07.026
16. Palai G., Beura S.K., Gupta N., Sinha R. Optical MUX/DEMUX using 3D photonic crystal structure: A future application of silicon photonics. Optik. 2017. 128. P. 224-227.
https://doi.org/10.1016/j.ijleo.2016.10.019
17. Ang T., Reed G., Vonsovici A., Evans A., Routley P., Josey M. Effects of grating heights on highly efficient unibond SOI waveguide grating couplers. IEEE Photonics Technol. Lett. 2000. 12, No 1. P. 59-61.
https://doi.org/10.1109/68.817493
18. Andriesh A., Zhornik V., Mironos A., Smirnova A.S. Changes in the diffraction efficiency of grating structures formed in thin films of glassy chalcogenide semiconductors by neutron irradiation. Sov. J. Quantum Electron. 1985. 15. P. 1284-1286 (in Russian).
https://doi.org/10.1070/QE1985v015n09ABEH007740
19. Baba T., Motegi A., Iwai T. et al. Light propagation characteristics of straight single-line-defect waveguides in photonic crystal slabs fabricated into a silicon-on-insulator substrate. IEEE J. Quantum Electron. 2002. 38, No 7. P. 743-752.
https://doi.org/10.1109/JQE.2002.1017584
20. Panda A., Mishra C.S., Palai G. PWE approach to optical hyristor for investigation of doping concentration. Optik. 2016. 127. P. 4831-4833.
https://doi.org/10.1016/j.ijleo.2016.02.024
21. Liu Z.S., Tibuleac S., Shin D., Young P.P., and Magnusson R. High-efficiency guided-mode resonance filter. Opt. Lett. 1998. 23, No 19. P. 1556-1558.
https://doi.org/10.1364/OL.23.001556
22. Ding Y. and Magnusson R. Use of nondegenerate resonant leaky modes to fashion diverse optical spectra. Opt. Exp. 2004. 12, No 9. P. 1885-1891.
https://doi.org/10.1364/OPEX.12.001885
23. Mateus C.F.R., Huang M.C.Y., Deng Y. et al. Ultrabroadband mirror using low-index cladded sub-wavelength grating. IEEE Photon. Technol. Lett. 2004. 16, No 2. P. 518-520.
https://doi.org/10.1109/LPT.2003.821258
24. Mateus C.F.R., Huang M.C.Y., Chen L. et al. Broad-band mirror (1.12-1.62 ?m) using a subwavelength grating. IEEE Photon. Technol. Lett. 2004. 16, No 7. P. 1676-1678.
https://doi.org/10.1109/LPT.2004.828514
25. Peng S. and Morris G.M. Experimental demonstration of resonant anomalies in diffraction from two dimensional gratings. Opt. Lett. 1996. 21. P. 549- 551.
https://doi.org/10.1364/OL.21.000549
26. Lousse V., Suh W., Kilic O. et al. Angular and polarization properties of a photonic crystal slab mirror. Opt. Exp. 2004. 12, No 8. P. 1575-1582.
https://doi.org/10.1364/OPEX.12.001575
27. Ergin T., Stenger N., Brenner P., Pendry J.B., Wegener M. Three-dimensional invisibility cloak at optical wavelengths. Science. 2010. 328. P. 337-339.
https://doi.org/10.1126/science.1186351
28. Tandaechanurat A., Ishida S., Guimard D. et al. Lasing oscillating a three-dimensional photonic crystal nanocavity with a complete bandgap. Nature Photon. 2011. 5. P. 91-94.
https://doi.org/10.1038/nphoton.2010.286
29. Vlasov Y.A., Bo X., Sturm J.C., Norris D.J. Onchip natural assembly of silicon photonic bandgap crystals. Nature. 2001. 414. P. 289-293.
https://doi.org/10.1038/35104529
30. Chan T.Y.M., Toader O., John S. Photonic bandgap formation by optical-phase-mask lithography. Phys. Rev. E. 2006. 73. P. 046610.
https://doi.org/10.1103/PhysRevE.73.046610
| |
|
|