Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 262-274 (2022).
DOI: https://doi.org/10.15407/spqeo25.03.262


References

1. Risken H. The Fokker-Planck Equation. Methods of Solutions and Applications. 2nd ed. Springer-Verlag, Berlin, 1992. https://doi.org/10.1115/1.2897281

2. Likharev K.K. Dynamics of Josephson Junctions and Circuits. Taylor & Francis Group, LLC, Boca Raton, London, New York, 1986.

3. Van Exter M.P., Willemsen M.B., Woerdman J.P. Polarization fluctuations in vertical-cavity semi-conductor lasers. Phys. Rev. A. 1998. 58. P. 4191. https://doi.org/10.1103/PhysRevA.58.4191

4. Ornigotti L., Filip R. Uncertainty-induced instantaneous speed and acceleration of a levitated particle. Sci. Rept. 2021. 11. P. 18185. https://doi.org/10.1038/s41598-021-97663-z

5. Gonzalez-Ballestero C., Aspelmeyer M., Novotny L., Quidant R., Romero-Isart O. Levitodynamics: Levitation and control of microscopic objects in vacuum. Science. 2021. 372. P. 6564. https://doi.org/10.1126/science.abg3027

6. Berezhkovskii A.M., Pustovoit M.A and Bezrukov S.M. Channel-facilitated membrane transport: Transit probability and interaction with the channel. J. Chem. Phys. 2002. 116. P. 9952. https://doi.org/10.1063/1.1475758

Average lifetimes in the channel: Channel-facilitated membrane transport. 2003. 119. P. 3943. https://doi.org/10.1063/1.1590957

7. Zheng J., Trudeau M.C. Handbook of Ion Channels. CRS Press, 2015. https://doi.org/10.1201/b18027

8. Kaufman I.K., McClintock P.V.E., Eisenberg R.S. Coulomb blockade model of permeation and selectivity in biological ion channels. New J. Phys. 2015. 17. 083021. https://doi.org/10.1088/1367-2630/17/8/083021 https://iopscience.iop.org/article/10.1088/1367-2630/17/8/083021.

9. Kramers H.A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physics. 1940. 7, No 4. P. 284-304. https://doi.org/10.1016/S0031-8914(40)90098-2

10. Lu H.P., Xun L., Xie X.S. Single-molecule enzyme-tic dynamics. Science. 1998. 282(5395). P. 1877-1882. https://doi.org/10.1126/science.282.5395.1877

11. Barkai E., Jung Y., and Silbey R. Theory of single-molecule spectroscopy: Beyond the ensemble average. Ann. Rev. Phys. Chem. 2004. 55. P. 457-507. https://doi.org/10.1146/annurev.physchem.55.111803.143246

12. Li Y., Debnath D., Ghosh P.K., and Marchesoni F. Nonlocality of relaxation rates in disordered landscapes. J. Chem. Phys. 2017. 146. 084104. https://doi.org/10.1063/1.4976844

13. Einstein A. Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Annalen der Physik. 1905. 17. P. 549-560. https://doi.org/10.1002/andp.19053220806

14. Einstein A. Zur Theorie der Brownschen Bewegung. Annalen der Physik. 1906. 19. P. 371-381. https://doi.org/10.1002/andp.19063240208

15. Smoluchowski M. Uber Brownsche Molekularbewegung unter Einwirkung au?erer Krafte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung. Annalen der Physik. 1916. 353, No 24. P. 1103-1112. https://doi.org/10.1002/andp.19163532408

16. Shneidman V.A. Transient solution of the Kramers problem in the weak noise limit. Phys. Rev. E. 1997. 56. P. 5257. https://doi.org/10.1103/PhysRevE.56.5257

17. Feynman R.P. and Hibbs A.R. Quantum Mechanics and Path Integrals. McGraw-Hill, New York, 1965.

18. Gelfand I.M. and Yaglom A.M. Integration in functional spaces and its applications in quantum physics. J. Math. Phys. 1960. 1, No. 1. P. 48-69. https://doi.org/10.1063/1.1703636

19. Rattray K.M. and McKane A.J. Stationary proba-bility distribution for a particle subject to coloured noise. J. Phys. A: Math. Gen. 1991. 24, No 18. P. 4375. https://iopscience.iop.org/article/10.1088/0305-4470/24/18/023/pdf.

https://doi.org/10.1088/0305-4470/24/18/023

20. Lehmann J., Reimann P., Hanggi P. Surmounting oscillating barriers: Path-integral approach for weak noise. Phys. Rev. E. 2000. 62. P. 6282. https://doi.org/10.1103/PhysRevE.62.6282

21. Luchinsky D.G., McClintock P.V.E., Dykman M.I. Analogue studies of nonlinear systems. Rept. Prog. Phys. 1998. 61, No 8. P. 889. https://iopscience.iop.org/article/10.1088/0034-4885/61/8/001. https://doi.org/10.1088/0034-4885/61/8/001

22. Vugmeister B.E., Botina J., and Rabitz H. Nonstationary optimal paths and tails of prehistory probability density in multistable stochastic systems. Phys. Rev. E. 1997. 55. P. 5338. https://doi.org/10.1103/PhysRevE.55.5338

23. Mannella R. Comment on "Nonstationary optimal paths and tails of prehistory probability density in multistable stochastic systems". Phys. Rev. E. 1999. 59. P. 2479. https://doi.org/10.1103/PhysRevE.59.2479

24. Vugmeister B.E., Botina J., and Rabitz H. Reply to "Comment on 'Nonstationary optimal paths and tails of prehistory probability density in multistable stochastic systems'". Phys. Rev. E. 1999. 59. P. 2481. https://doi.org/10.1103/PhysRevE.59.2481

25. Dykman M.I., McClintock P.V.E., Smelyanskiy V.N., Stein N.D., and Stocks N.G. Optimal paths and the prehistory problem for large fluctuations in noise-driven systems. Phys. Rev. Lett. 1992. 68. P. 2718. https://doi.org/10.1103/PhysRevLett.68.2718

26. Soskin S.M., Sheka V.I., Linnik T.L., Mannella R. Escapes and transitions in overdamped systems on short times: General solution. In Unsolved Problems of Noise. Ed. L. Reggiani, C. Penneta, V. Akimov, E. Alfinito, M. Rosini. American Institute of Physics, Melville, NY, USA. 2005. AIP Conf. Proc. 2005. 800, No 1. P. 262-269. https://doi.org/10.1063/1.2138623

27. Stocks N.G. private communication.

28. Smelyanskiy V.N. and Dykman M.I. Optimal control of large fluctuations. Phys. Rev. E. 1997. 55. P. 2516. https://doi.org/10.1103/PhysRevE.55.2516

29. Vugmeister B. E. and Rabitz H. Cooperating with nonequilibrium fluctuations through their optimal control. Phys. Rev. E. 1997. 55. P. 2522. https://doi.org/10.1103/PhysRevE.55.2522

30. Soskin S.M., Sheka V.I., Linnik T.L., Mannella R. Noise-induced transitions in overdamped systems: short times. Noise in Complex Systems and Stochastic Dynamics, Eds. L. Schimansky-Geier, D. Abbott, A. Neiman and C. Van den Broeck, Proc. Series. SPIE, Washington. 2003. 5114. P. 289-300. https://doi.org/10.1117/12.498532

31. Elsgolc L.E. Calculus of Variations. Pergamon Press, London. 1961.

32. Soskin S.M. Most probable transition path in an overdamped system for a finite transition time. Phys. Lett. A. 2006. 353. P. 281-290. https://doi.org/10.1016/j.physleta.2005.12.110

33. Landau L.D., Lifshitz E.M. Mechanics. Pergamon Press, London, 1976.