Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (2), P. 262-274 (2022).
DOI: https://doi.org/10.15407/spqeo25.03.262
References
1. Risken H. The Fokker-Planck Equation. Methods of Solutions and Applications. 2nd ed. Springer-Verlag, Berlin, 1992.
https://doi.org/10.1115/1.2897281
2. Likharev K.K. Dynamics of Josephson Junctions and Circuits. Taylor & Francis Group, LLC, Boca Raton, London, New York, 1986.
3. Van Exter M.P., Willemsen M.B., Woerdman J.P. Polarization fluctuations in vertical-cavity semi-conductor lasers. Phys. Rev. A. 1998. 58. P. 4191.
https://doi.org/10.1103/PhysRevA.58.4191
4. Ornigotti L., Filip R. Uncertainty-induced instantaneous speed and acceleration of a levitated particle. Sci. Rept. 2021. 11. P. 18185.
https://doi.org/10.1038/s41598-021-97663-z
5. Gonzalez-Ballestero C., Aspelmeyer M., Novotny L., Quidant R., Romero-Isart O. Levitodynamics: Levitation and control of microscopic objects in vacuum. Science. 2021. 372. P. 6564.
https://doi.org/10.1126/science.abg3027
6. Berezhkovskii A.M., Pustovoit M.A and Bezrukov S.M. Channel-facilitated membrane transport: Transit probability and interaction with the channel. J. Chem. Phys. 2002. 116. P. 9952. https://doi.org/10.1063/1.1475758
Average lifetimes in the channel: Channel-facilitated membrane transport. 2003. 119. P. 3943.
https://doi.org/10.1063/1.1590957
7. Zheng J., Trudeau M.C. Handbook of Ion Channels. CRS Press, 2015.
https://doi.org/10.1201/b18027
8. Kaufman I.K., McClintock P.V.E., Eisenberg R.S. Coulomb blockade model of permeation and selectivity in biological ion channels. New J. Phys. 2015. 17. 083021.
https://doi.org/10.1088/1367-2630/17/8/083021
https://iopscience.iop.org/article/10.1088/1367-2630/17/8/083021.
9. Kramers H.A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physics. 1940. 7, No 4. P. 284-304.
https://doi.org/10.1016/S0031-8914(40)90098-2
10. Lu H.P., Xun L., Xie X.S. Single-molecule enzyme-tic dynamics. Science. 1998. 282(5395). P. 1877-1882.
https://doi.org/10.1126/science.282.5395.1877
11. Barkai E., Jung Y., and Silbey R. Theory of single-molecule spectroscopy: Beyond the ensemble average. Ann. Rev. Phys. Chem. 2004. 55. P. 457-507.
https://doi.org/10.1146/annurev.physchem.55.111803.143246
12. Li Y., Debnath D., Ghosh P.K., and Marchesoni F. Nonlocality of relaxation rates in disordered landscapes. J. Chem. Phys. 2017. 146. 084104.
https://doi.org/10.1063/1.4976844
13. Einstein A. Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Annalen der Physik. 1905. 17. P. 549-560.
https://doi.org/10.1002/andp.19053220806
14. Einstein A. Zur Theorie der Brownschen Bewegung. Annalen der Physik. 1906. 19. P. 371-381.
https://doi.org/10.1002/andp.19063240208
15. Smoluchowski M. Uber Brownsche Molekularbewegung unter Einwirkung au?erer Krafte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung. Annalen der Physik. 1916. 353, No 24. P. 1103-1112.
https://doi.org/10.1002/andp.19163532408
16. Shneidman V.A. Transient solution of the Kramers problem in the weak noise limit. Phys. Rev. E. 1997. 56. P. 5257.
https://doi.org/10.1103/PhysRevE.56.5257
17. Feynman R.P. and Hibbs A.R. Quantum Mechanics and Path Integrals. McGraw-Hill, New York, 1965.
18. Gelfand I.M. and Yaglom A.M. Integration in functional spaces and its applications in quantum physics. J. Math. Phys. 1960. 1, No. 1. P. 48-69.
https://doi.org/10.1063/1.1703636
19. Rattray K.M. and McKane A.J. Stationary proba-bility distribution for a particle subject to coloured noise. J. Phys. A: Math. Gen. 1991. 24, No 18. P. 4375. https://iopscience.iop.org/article/10.1088/0305-4470/24/18/023/pdf.
https://doi.org/10.1088/0305-4470/24/18/023
20. Lehmann J., Reimann P., Hanggi P. Surmounting oscillating barriers: Path-integral approach for weak noise. Phys. Rev. E. 2000. 62. P. 6282.
https://doi.org/10.1103/PhysRevE.62.6282
21. Luchinsky D.G., McClintock P.V.E., Dykman M.I. Analogue studies of nonlinear systems. Rept. Prog. Phys. 1998. 61, No 8. P. 889. https://iopscience.iop.org/article/10.1088/0034-4885/61/8/001.
https://doi.org/10.1088/0034-4885/61/8/001
22. Vugmeister B.E., Botina J., and Rabitz H. Nonstationary optimal paths and tails of prehistory probability density in multistable stochastic systems. Phys. Rev. E. 1997. 55. P. 5338.
https://doi.org/10.1103/PhysRevE.55.5338
23. Mannella R. Comment on "Nonstationary optimal paths and tails of prehistory probability density in multistable stochastic systems". Phys. Rev. E. 1999. 59. P. 2479.
https://doi.org/10.1103/PhysRevE.59.2479
24. Vugmeister B.E., Botina J., and Rabitz H. Reply to "Comment on 'Nonstationary optimal paths and tails of prehistory probability density in multistable stochastic systems'". Phys. Rev. E. 1999. 59. P. 2481.
https://doi.org/10.1103/PhysRevE.59.2481
25. Dykman M.I., McClintock P.V.E., Smelyanskiy V.N., Stein N.D., and Stocks N.G. Optimal paths and the prehistory problem for large fluctuations in noise-driven systems. Phys. Rev. Lett. 1992. 68. P. 2718.
https://doi.org/10.1103/PhysRevLett.68.2718
26. Soskin S.M., Sheka V.I., Linnik T.L., Mannella R. Escapes and transitions in overdamped systems on short times: General solution. In Unsolved Problems of Noise. Ed. L. Reggiani, C. Penneta, V. Akimov, E. Alfinito, M. Rosini. American Institute of Physics, Melville, NY, USA. 2005. AIP Conf. Proc. 2005. 800, No 1. P. 262-269.
https://doi.org/10.1063/1.2138623
27. Stocks N.G. private communication.
28. Smelyanskiy V.N. and Dykman M.I. Optimal control of large fluctuations. Phys. Rev. E. 1997. 55. P. 2516.
https://doi.org/10.1103/PhysRevE.55.2516
29. Vugmeister B. E. and Rabitz H. Cooperating with nonequilibrium fluctuations through their optimal control. Phys. Rev. E. 1997. 55. P. 2522.
https://doi.org/10.1103/PhysRevE.55.2522
30. Soskin S.M., Sheka V.I., Linnik T.L., Mannella R. Noise-induced transitions in overdamped systems: short times. Noise in Complex Systems and Stochastic Dynamics, Eds. L. Schimansky-Geier, D. Abbott, A. Neiman and C. Van den Broeck, Proc. Series. SPIE, Washington. 2003. 5114. P. 289-300.
https://doi.org/10.1117/12.498532
31. Elsgolc L.E. Calculus of Variations. Pergamon Press, London. 1961.
32. Soskin S.M. Most probable transition path in an overdamped system for a finite transition time. Phys. Lett. A. 2006. 353. P. 281-290.
https://doi.org/10.1016/j.physleta.2005.12.110
33. Landau L.D., Lifshitz E.M. Mechanics. Pergamon Press, London, 1976.
| |
|
|