Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (3), P. 294-302 (2022).
DOI: https://doi.org/10.15407/spqeo25.03.294


References

1. Yu C., Zhao F., Luo J., Zhang L., Sun X. Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy. 2021. 83. P. 105858. https://doi.org/10.1016/j.nanoen.2021.105858

2. Wu J., Liu S., Han F., Yao X. Wang C. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021. 33. P. 2000751. https://doi.org/10.1002/adma.202000751

3. Wang C., Liang J., Zhao Y. et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 2021. 14. P. 2577-2619. https://doi.org/10.1039/D1EE00551K

4. Sun C., Liu J., Gong Y., Wilkinson D.P., Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy. 2017. 33. P. 363-386. https://doi.org/10.1016/j.nanoen.2017.01.028

5. Randau S., Weber D.A., Kotz O. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy. 2020. 5. P. 259-270. https://doi.org/10.1038/s41560-020-0565-1

6. Zhu J., Li X., Wu C. et al. A multilayer ceramic electrolyte for all-solid-state Li batteries. Angew. Chem. Int. Ed. 2021. 60. P. 3781-3790. https://doi.org/10.1002/anie.202014265

7. Zhou L., Minafra N., Zeier W.G., Nazar L.F. Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries. Acc. Chem. Res. 2021. 54. P. 2717-2728. https://doi.org/10.1021/acs.accounts.0c00874

8. Shen Y., Zhang Y., Han S. et al. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes. Joule. 2018. 2. P. 1674-1689. https://doi.org/10.1016/j.joule.2018.06.021

9. Wang S., Tang M., Zhang Q. et al. Lithium argyroditeas solid electrolyte and cathode precursor for solid-state batteries with long cycle life. Adv. Energy Mater. 2021. 11. 2101370. https://doi.org/10.1002/aenm.202101370

10. Kuhs W.F., Nitsche R., Scheunemann K. The argyrodites - a new family of tetrahedrally close-packed structures. Mat. Res. Bull. 1979. 14. P. 241-248. https://doi.org/10.1016/0025-5408(79)90125-9

11. Nilges T., Pfitzner A. A structural differentiation of quaternary copper argyrodites: Structure-property relations of high temperature ion conductors. Z. Kristallogr. 2005. 220. P. 281-294. https://doi.org/10.1524/zkri.220.2.281.59142

12. Morgan B.J. Mechanistic origin of superionic lithium diffusion in anion-disordered Li6PS5X argyrodites. Chem. Mater. 2021. 33. P. 2004-2018. https://doi.org/10.1021/acs.chemmater.0c03738

13. Hanghofer I., Brinek M., Eisbacher S.L. et al. Substitutional disorder: structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I. Phys. Chem. Chem. Phys. 2019. 21. P. 8489-8507. https://doi.org/10.1039/C9CP00664H

14. Adeli P., Bazak J.D., Park K.H. et al. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem. Int. Ed. 2019. 58. P. 8681-8686. https://doi.org/10.1002/anie.201814222

15. Zhang Z., Sun Y., Duan X. et al. Design and synthesis of room temperature stable Li-argyrodite superionic conductors via cation doping. J. Mater. Chem. A. 2019. 7. P. 2717-2722. https://doi.org/10.1039/C8TA10790D

16. Semkiv I., Ilchuk H., Pawlowski M., Kusnezh V. Ag8SnSe6 argyrodite synthesis and optical properties. Opto-Electron. Rev. 2017. 25. P. 37-40. https://doi.org/10.1016/j.opelre.2017.04.002

17. Studenyak I.P., Izai V.Yu., Studenyak V.I. et al. Interrelations between structural and optical properties of (Cu1-õAgx)7GeS5I mixed crystals. Ukr. J. Phys. Opt. 2018. 19. P. 237-243. https://doi.org/10.3116/16091833/19/4/237/2018

18. Studenyak I.P., Pop M.M., Shender I.O., Pogodin A.I., Kranjcec M. Temperature behaviour of fundamental absorption edge in superionic Ag6PS5I crystals. Ukr. J. Phys. Opt. 2021. 22. P. 216-224. https://doi.org/10.3116/16091833/22/4/216/2021

19. Pogodin A.I., Filep M.J., Malakhovska T.O. et al. The copper argyrodites Cu7-nPS6-nBrn: Crystal growth, structures and ionic conductivity. Solid State Ionics. 2019. 341. P. 115023. https://doi.org/10.1016/j.ssi.2019.115023

20. Studenyak I.P., Pogodin A.I., Studenyak V.I. et al. Electrical properties of copper- and silver-containing superionic (Cu1-xAgx)7SiS5I mixed crystals with argyrodite structure. Solid State Ionics. 2020. 345. P. 115183. https://doi.org/10.1016/j.ssi.2019.115183

21. Studenyak I.P., Pogodin A.I., Filep M.J. et al. Influence of heterovalent cationic substitution on electrical properties of Ag6+x(P1-xGex)S5I solid solutions. J. Alloys Compd. 2021. 873. P. 159784. https://doi.org/10.1016/j.jallcom.2021.159784

22. Kraft Ì.A., Ohno S., Zinkevich T. et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1?xGexS5I for all-solid-state batteries. J. Am. Chem. Soc. 2018. 140. P. 16330? 16339. https://doi.org/10.1021/jacs.8b10282

23. Chen H.M., Maohua C., Adams S. Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys. Chem. Chem. Phys. 2015. 17, No 25. P. 16494?16506. https://doi.org/10.1039/C5CP01841B

24. Lin S., Li W., Pei Y. Thermally insulative thermo-electric argyrodites. Mater. Today. 2021. 48. P. 198? 213. https://doi.org/10.1016/j.mattod.2021.01.007

25. Studenyak I.P., Pogodin A.I., Luchynets M.M. et al. Influence of heterovalent substitution on structural, electrical and thermoelectric properties of Cu7-xPS6-xBrx solid solutions. J. Phys. Chem. Solids. 2021. 150. P. 109855. https://doi.org/10.1016/j.jpcs.2020.109855

26. Beeken R.B., Garbe J.J., Gillis J.M. et al. Electrical conductivities of the Ag6PS5X and the Cu6PSe5X (X=Br, I) argyrodites. J. Phys. Chem. Solids. 2005. 66. P. 882?886. https://doi.org/10.1016/j.jpcs.2004.10.010

27. Beeken R.B., Garbe J.J., Petersen N.R., Stoneman M.R. Electrical properties of the Ag6PSe5X (X=Cl, Br, I) argyrodites. J. Phys. Chem. Solids. 2004. 65. P. 1011?1014. https://doi.org/10.1016/j.jpcs.2003.10.060

28. Laqibi M., Cros B., Peytavin S., Ribes M. New silver superionic conductors Ag7XY5Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I)-synthesis and electrical studies. Solid State Ionics. 1987. 23. P. 21?26. https://doi.org/10.1016/0167-2738(87)90077-4

29. Beeken R.B., Driessen C.R., Hinaus B.M., Pawlisch D.E. Electrical conductivity of Ag7PSe6 and Cu7PSe6. Solid State Ionics. 2008. 179. P. 1058?1060. https://doi.org/10.1016/j.ssi.2008.01.014

30. Studenyak I.P., Pogodin A.I., Filep M.J. et al. Crystal structure and electrical properties of Ag6PS5I single crystal. SPQEO. 2021. 24. P. 26?33.

31. Rollett A., Rohrer G.S., Humphreys J. Recrystallization and Related Annealing Phenomena. Elsevier. 2017.

32. Cheikh A., Madani A., Touati A. et al. Ionic conductivity of zirconia based ceramics from single crystals to nanostructured polycrystals. J. Eur. Ceram. Soc. 2001. 21. P. 1837?1841. https://doi.org/10.1016/S0955-2219(01)00126-1

33. Salkus T., Kazakevicius E., Banys J. et al. Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics. Solid State Ionics. 2014. 262. P. 597?600. https://doi.org/10.1016/j.ssi.2013.10.040

34. Orazem M.E., Tribollet B. Electrochemical Impe-dance Spectroscopy. New Jersey: John Wiley & Sons, 2008. https://doi.org/10.1002/9780470381588

35. Barsoukov E., Macdonald J.R. Impedance Spectro-scopy: Theory, Experiment, and Applications. Hoboken, New Jersey: John Wiley & Sons. 2018. https://doi.org/10.1002/9781119381860

36. Huggins R.A. Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review. Ionics. 2002. 8, No 3. P. 300?313. https://doi.org/10.1007/BF02376083