Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (3), P. 303-314 (2022).
DOI: https://doi.org/10.15407/spqeo25.03.303
References
1. Ticleanu C. Impacts of home lighting on human health. Lighting Res. Technol. 2021. 53, No 5. P. 453-475.
https://doi.org/10.1177/14771535211021064
2. Nagare R., Woo M., MacNaughton P. et al. Access to daylight at home improves circadian alignment, sleep, and mental health in healthy adults: A crossover study. Int. J. Environ. Res. Public Health. 2021. 18, No 19. Art. No 9980.
https://doi.org/10.3390/ijerph18199980
3. von Gall C. The effects of light and the circadian system on rhythmic brain function. Int. J. Molecul. Sci. 2022. 23, No 5. Art. No 2778.
https://doi.org/10.3390/ijms23052778
4. Pandi-Perumal S.R., Cardinali D.P., Zaki N.F.W. et al. Timing is everything: Circadian rhythms and their role in the control of sleep. Frontiers in Neuroendocrinology. 2022. 66. Art. No 100978.
https://doi.org/10.1016/j.yfrne.2022.100978
5. Al-Naggar R.A., Anil S. Artificial light at night and cancer: Global study. Asian Pacific Journal of Cancer Prevention. 2016. 17, No 10. P. 4661-4664.
6. Svechkina A., Portnov B.A., Trop T. The impact of artificial light at night on human and ecosystem health: a systematic literature review. Landscape Ecol. 2020. 35, P. 1725-1742.
https://doi.org/10.1007/s10980-020-01053-1
7. Wacker M., Holick M.F. Sunlight and vitamin D. Dermato-Endocrinology. 2013. 5, No 1. P. 51-108.
https://doi.org/10.4161/derm.24494
8. Nakano T., Chiang K.C., Chen C.C. et al. Sunlight exposure and phototherapy: Perspectives for healthy aging in an era of COVID-19. Int. J. Environ. Res. Public Health. 2021. 18, No 20. Art. No 10950.
https://doi.org/10.3390/ijerph182010950
9. Nie J., Wang Q., Dang W. et al. Tunable LED lighting with five channels of RGCWW for high circadian and visual performances. IEEE Photonics J. 2019. 11, No 6. Art. No 8201512.
https://doi.org/10.1109/JPHOT.2019.2950834
10. CIE13.3-1995. 1995. Method of measuring and specifying colour rendering properties of light sources. Vienna (Austria): CIE.
11. David A., Fini P.T., Houser K.W. et al Develop-ment of the IES method for evaluating the color ren-dition of light sources. Opt. Exp. 2015. 23. P. 15888- 15906.
https://doi.org/10.1364/OE.23.015888
12. IES. 2015. IES-TM-30-15: method for evaluating light source color rendition. New York (NY): The Illuminating Engineering Society of North America.
13. Davis W., Ohno Y. Color quality scale. Opt. Eng. 2010. 49. P. 33602-33616.
https://doi.org/10.1117/1.3360335
14. CIE13.3-1995. 1995. Method of measuring and specifying colour rendering properties of light sources. Vienna (Austria): CIE.
15. Zhu Y., Yang M., Yao Y. et al. Effects of illu-minance and correlated color temperature on daytime cognitive performance, subjective mood, and alertness in healthy adults. Environment and Behavior. 2017. 51, No 2. P. 199-230.
https://doi.org/10.1177/0013916517738077
16. Lan L., Hadji S., Xia L. et al. The effects of light illuminance and correlated color temperature on mood and creativity. Build. Simul. 2021. 14. P. 463-475.
https://doi.org/10.1007/s12273-020-0652-z
17. LiY., Ru T., Chen Q. et al. Effects of illuminance and correlated color temperature of indoor light on emotion perception. Sci. Rep. 2021. 11. Art. No 14351.
https://doi.org/10.1038/s41598-021-93523-y
18. Lishik S.I., Posedko V.S., Trofimov Yu.V., Tsvirko V.I. Current state, trends and prospectives of the development of light emitting diode technology. Light & Eng. 2017. 25. P. 13-24.
19. Zhang M., Chen Y., He G. Color temperature tunable white-light LED cluster with extrahigh color rendering index. The Scientific World Journal. 2014. 2014. Art. No 897960.
https://doi.org/10.1155/2014/897960
20. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. et al. Electro-optical characteristics of an innovative LED luminaire with an LED matrix cooling system based on heat pipes. SPQEO. 2020. 23, No 4. P. 415-423.
https://doi.org/10.1016/j.tsep.2020.100549
21. Pekur D.V., Kolomzarov Yu.V., Sorokin V.M., Nikolaenko Yu.E. Super powerful LED luminaires with a high color rendering index for lighting systems with combined electric power supply. SPQEO. 2022. 25, No 1. P. 97-107.
https://doi.org/10.15407/spqeo25.01.097
22. Kornaga V.I., Pekur D.V., Kolomzarov Yu.V. et al. Intelligence system for monitoring and governing the energy efficiency of solar panels to power LED luminaires. SPQEO. 2021. 24, No 5. P. 200-209.
https://doi.org/10.15407/spqeo24.02.200
23. Nikolaenko Yu.E., Pekur D.V., Sorokin V.M. Light characteristics of high-power LED luminaire with a cooling system based on heat pipe. SPQEO. 2019. 22, No 3. P. 366-371.
https://doi.org/10.15407/spqeo22.03.366
24. Pekur D.V., Nikolaenko Yu.E., Sorokin V.M. Optimization of the cooling system design for a compact high-power LED luminaire. SPQEO. 2020. 23, No 1. P. 91-101.
https://doi.org/10.15407/spqeo23.01.091
25. Pekur D.V., Sorokin V.M., Nikolaenko Yu.E. Thermal characteristics of a compact LED luminaire with a cooling system based on heat pipes. TSEP. 2020. 18. Art. No 100549.
https://doi.org/10.1016/j.tsep.2020.100549
26. Pekur D.V., Sorokin V.M., Nikolaenko Y.E. Fea-tures of wall-mounted luminaires with different types of light sources. ELECTRICA. 2021. 21, No 1. P. 32-40.
https://doi.org/10.5152/electrica.2020.20017
27. Reay D.A., Kew P.A., McGlen R.J. Heat Pipe: Theory, Design and Applications. 6th ed. Buterworth-Heinemann, Amsterdam, 2014.
28. Prisniakov K., Marchenko O., Melikaev Yu. et al. About complex influence of vibrations and gravi-tational fields on serviceability of heat pipes in com-position of the space-rocket systems. 54th Int. Astro-nautical Congress of the Int. Astronautical Federa-tion (IAF), the Int. Academy of Astronautics and the Int. Institute of Space Law, Int. Astronautical Congress (IAF). Bremen, Germany, 2003. P. 1571-1580.
https://doi.org/10.2514/6.IAC-03-I.1.10
29. Nikolaenko Yu.E., Pekur D.V., Sorokin V.M. et al. Experimental study on characteristics of gravity heat pipe with threaded evaporator. TSEP. 2021. 26. Art. No 101107.
https://doi.org/10.1016/j.tsep.2021.101107
30. Gentsar P.O., Stronski A.V., Karachevtseva L.A., Onyshchenko V.F. Optical properties of mono-crystalline silicon nanowires. Physics and Che-mistry of Solid State. 2021. 22, No 3. P. 453-459.
https://doi.org/10.15330/pcss.22.3.453-459
31. Onyshchenko V.F. Distribution of excess charge carriers in bilateral macroporous silicon with different thicknesses of porous layers. J. Nano-Electron. Phys. 2021. 13, No 6. P. 06010-1-06010-5.
https://doi.org/10.21272/jnep.13(6).06010
32. Posudievsky O.Y., Lypenko D.A., Khazieieva O.A. et al. Nanocomposite of polyaniline with partially oxidized graphene as the transport layer of light-emitting polymer diodes. Theoretical and Experimental Chemistry. 50, No 2. P. 96-102.
https://doi.org/10.1007/s11237-014-9352-z
33. Cherpak V., Stakhira P., Khomyak S. et al. Properties of 2,6-di-tert.-butyl-4-(2,5-diphenyl-3,4-dihydro-2H-pyrazol-3-yl)-phenol as hole-transport material for life extension of organic light emitting diodes. Opt. Mater. 2011. 33, No 11. P. 1727-1731.
https://doi.org/10.1016/j.optmat.2011.05.034
34. Zhan X., Wang W., Chung H. A novel color control method for multi-color LED systems to achieve high color rendering indexes. IEEE Trans. Power Electron. 2018. 33, No 10. P. 8246-8258.
https://doi.org/10.1109/TPEL.2017.2785307
35. Qiao L., Zhang H., Yu J. et al. Design of smart light source based on bi-color LED with single duty cycle for correlated color temperature adjustment. Opt. Quant. Electron. 2021. 53, No 11. P. 610.
https://doi.org/10.1007/s11082-021-03227-w
36. Wong C.P.G., Lee A.T.L., Li K. et al. Precise luminous flux and color control of dimmable red-green-blue light-emitting diode systems. IEEE Trans. Power Electron. 2022. 37, No 1. P. 588-606.
https://doi.org/10.1109/TPEL.2021.3102260
37. Lee A.T.L., Chen H., Tan S.-C. Hui S.Y. Precise dimming and color control of LED systems based on color mixing. IEEE Trans. Power Electron. 2016. 31, No 1. P. 65-80.
https://doi.org/10.1109/TPEL.2015.2448641
38. Chen H., Tan S., Lee A., Lin D., Hui S. Precise color control of red-green-blue light-emitting diode systems. IEEE Trans. Power Electron. 2017. 32, No 4. P. 3063-3074.
https://doi.org/10.1109/TPEL.2016.2581828
39. CITIZEN ELECTRONICS CO., LTD. https://ce.citizen.co.jp/cms/ce/lighting_led/dl_data/COB_Version6/datasheet/CLU058-3618C4_0082P_201710_180423.pdf
(reference date: 08.02.2022).
40. Ñree Inc. https://cree-led.com/media/documents/ CMU2258.pdf
(reference date: 08.02.22).
41. Ñree Inc. https://cree-led.com/media/documents/ds-CMA2550.pdf
(reference date: 08.02.22).
42. Luo D., Wang L., Or S.W., Zhang H., Xie R.-J. Realizing superior white LEDs with both high R9 and luminous efficacy by using dual red phosphors. RSC Adv. 2017. 7, No 42. P. 25964-25968.
https://doi.org/10.1039/C7RA04614F
43. Yao L., He S., Nie W. et al. Enhanced red emission from Mn4+ activated phosphor induced by fluoride to oxyfluoride phase transformation. J. Lumin. 2021. 238. P. 118315.
https://doi.org/10.1016/j.jlumin.2021.118315
44. Hong S.C., Ko J.H. Effects of scattering particles on the color rendering and color dispersion of white light-emitting diodes studied by optical simulation. J. Korean Phys. Soc. 2021. 79. P. 631-637.
https://doi.org/10.1007/s40042-021-00285-x
45. Smith T., Guild J. The C.I.E. colorimetric standards and their use. Trans. Opt. Soc. 1931. 33, No 3. P. 73- 134.
https://doi.org/10.1088/1475-4878/33/3/301
46. MacAdam D.L. Projective transformations of I.C.I. color specifications. JOSA. 1937. 27, No 8. P. 294-299.
https://doi.org/10.1364/JOSA.27.000294
47. Robertson A.R. Computation of correlated color temperature and distribution temperature. J. Opt. Soc. Amer. 1968. 58. P. 1528-1535. https://opg. optica.org/josa/abstract.cfm?URI=josa-58-11-1528.
https://doi.org/10.1364/JOSA.58.001528
48. McCamy C.S. Correlated color temperature as an explicit function of chromaticity coordinates. Color Research & Application. 1992. 17, No 2. P. 142-144.
https://doi.org/10.1002/col.5080170211
49. Ohno Y. Practical use and calculation of CCT and Duv. LEUKOS. 2014. 10, No 1. P. 47-55.
https://doi.org/10.1080/15502724.2014.839020
50. Smet K.A.G. Tutorial: The LuxPy Python Toolbox for Lighting and Color Science. LEUKOS. 2020. 16, No 3. P. 179-201.
https://doi.org/10.1080/15502724.2018.1518717
51. "LED ColorCalculator," Version 7.15, OSRAM SYLVANIA, Massachusetts, https://www.osram.us/cb/tools-and-resources/applications/led-colorcalculator/index.jsp
| |
|
|