Semiconductor Physics, Quantum Electronics & Optoelectronics, 25 (3), P. 323-330 (2022).
DOI: https://doi.org/10.15407/spqeo25.03.323


References

1. Whiteside M., Arulkumaran S., Ng G.I. Demon-stration of vertically-ordered h-BN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors on Si substrate. Mater. Sci. Eng.: B. 2021. 270. P. 115224. https://doi.org/10.1016/j.mseb.2021.115224

2. Bergamim L.F.O., Parvais B., Simoen E., de Andrade M.G.C. Analog performance of GaN/AlGaN high-electron-mobility transistors. Solid-State Electronics. 2021. 183. P. 108048. https://doi.org/10.1016/j.sse.2021.108048

3. Bouzid F., Saeed M.A., Carotenuto R., Pezzimenti F. Design considerations on 4H-SiC-based p-n junction betavoltaic cells. Appl. Phys. A. 2022. 128. P. 234. https://doi.org/10.1007/s00339-022-05374-7

4. Bouzid F., Pezzimenti F., Dehimi L. Modelling and performance analysis of a GaN-based n/p junction betavoltaic cell. Nucl. Instrum. Methods Phys. Res. Section A. 2020. 969. P. 164103. https://doi.org/10.1016/j.nima.2020.164103

5. Bouzid F., Dehimi S., Hadjab M. et al. Performance prediction of AlGaAs/GaAs betavoltaic cells irradiated by nickel-63 radioisotope. Physica B: Condensed Matter. 2021. 607. P. 412850. https://doi.org/10.1016/j.physb.2021.412850

6. Slight T.J., Yadav A., Odedina O. et al. InGaN/GaN laser diodes with high order notched gratings. IEEE Photonics Technol. Lett. 2017. 29. P. 2020-2022.. https://doi.org/10.1109/LPT.2017.2759903

7. Ruhnke N., Muller A., Eppich B. et al. Compact deep UV system at 222.5 nm based on frequency doubling of GaN laser diode emission. IEEE Photonics Technol. Lett. 2018, 30. P. 289-292. https://doi.org/10.1109/LPT.2017.2787463

8. Anwar A.R., Usman M., Munsif M., Saba K. Reduction of efficiency droop by inserting superlattice quaternary-ternary electron blocking layer in GaN-based light-emitting diodes. Mater. Sci. Eng.: B. 2021. 271. P. 115279. https://doi.org/10.1016/j.mseb.2021.115279

9. Tang X., Ma Z., Han L. et al. Stripping GaN/InGaN epitaxial films and fabricating vertical GaN-based light-emitting diodes. Vacuum. 2021. 187. P. 110160. https://doi.org/10.1016/j.vacuum.2021.110160

10. Lee D.J., Ryu S.R., Kumar G.M. et al. Piezo-phototronic effect triggered flexible UV photo-detectors based on ZnO nanosheets/GaN nanorods arrays. Appl. Surf. Sci. 2021. 558. P. 149896. https://doi.org/10.1016/j.apsusc.2021.149896

11. Chen Y., Wu Y., Ben J. et al. A high-response ultraviolet photodetector by integrating GaN nanoparticles with graphene. J. Alloys Compnd. 2021. 868. P. 159281. https://doi.org/10.1016/j.jallcom.2021.159281

12. Bouzid F., Pezzimenti F., Dehimi L. et al. Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode. Jpn. J. Appl. Phys. 2017. 56. P. 094301. https://doi.org/10.7567/JJAP.56.094301

13. Bouzid F., Dehimi L., Pezzimenti F. Performance analysis of a Pt/n-GaN Schottky barrier UV detector. J. Electron. Mater. 2017. 46. P. 6563-6570. https://doi.org/10.1007/s11664-017-5696-1

14. Bouzid F., Dehimi L., Pezzimenti F., Hadjab M., Larbi A.H. Numerical simulation study of a high efficient AlGaN-based ultraviolet photodetector. Superlattices Microstruct. 2018. 122. P. 57-73. https://doi.org/10.1016/j.spmi.2018.08.022

15. Lv Z., Liu L., Sun Y. et al. Absorption enhance-ment of ultraviolet detector in plasmonic nano-particles-decorated GaN/AlGaN nanostructures. Opt. Commun. 2021. 492. P. 126972. https://doi.org/10.1016/j.optcom.2021.126972

16. Yakimov E.B., Polyakov A.Y., Shchemerov I.V. et al. On the nature of photosensitivity gain in Ga2O3 Schottky diode detectors: Effects of hole trapping by deep acceptors. J. Alloys Compd. 2021. 879. P. 160394. https://doi.org/10.1016/j.jallcom.2021.160394

17. Upadhyay K.T., Chattopadhyay M.K. Sensor applications based on AlGaN/GaN heterostructures. Mater. Sci. Eng.: B. 2021. 263. P. 114849. https://doi.org/10.1016/j.mseb.2020.114849

18. Chen Q., Yang J.W., Osinsky A. et al. Schottky barrier detectors on GaN for visible-blind ultraviolet detection. Appl. Phys. Lett. 1997. 70. P. 2277. https://doi.org/10.1063/1.118837

19. Zhao D.G., Jiang D.S. GaN Based Ultraviolet Photodetectors, Photodiodes - World Activities in 2011 (Prof. Jeong Woo Park (Ed.). InTech., 2011.

20. Zhang S., Zhao D.G., Jiang D.S. et al. Investigation of responsivity decreasing with rising bias voltage in a GaN Schottky barrier photodetector. Semicond. Sci. Technol. 2008. 23. P. 105015. https://doi.org/10.1088/0268-1242/23/10/105015

21. Mou W., Zhao L., Chen L. et al. GaN-based Schottky barrier ultraviolet photodetectors with graded doping on patterned sapphire substrates. Solid-State Electronics. 2017. 133. P. 78. https://doi.org/10.1016/j.sse.2017.04.008

22. Sun X., Li D., Li Z. et al. High spectral response of self-driven GaN-based detectors by controlling the contact barrier height. Sci. Rep. 2015. 5. P. 16819. https://doi.org/10.1038/srep16819

23. Teisseyre H., Perlin P., Suski T. et al. Temperature dependence of the energy gap in GaN bulk single crystals and epitaxial layer. J. Appl. Phys. 1994. 76. P. 2429. https://doi.org/10.1063/1.357592

24. Baik K.H., Irokawa Y., Ren F., Pearton S.J., Park S.S. Temperature dependence of forward current characteristics of GaN junction and Schottky rectifiers. Solid-State Electron. 2003. 47. P. 1533. https://doi.org/10.1016/S0038-1101(03)00071-6

25. Pearton S.J., Abernathy C.R., Ren F. Gallium Nitride Processing for Electronics, Sensors and Spintronics. London, Springer, 2006.

26. Shockley W., Read W.T. Statistics of the recombi-netions of holes and electrons. Phys. Rev. 1952. 87. P. 835. https://doi.org/10.1103/PhysRev.87.835

27. Silvaco Atlas User's Manual, Device Simulator Software, 2013.

28. Razeghi M., Henini M. Optoelectronic Devices:III-Nitrides, Amsterdam, Elsevier, 2004.

29. Caughey D., Thomas R. Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE. 1967. 55. P. 2192. https://doi.org/10.1109/PROC.1967.6123

30. Mnatsakanov T.T., Levinshtein M.E., Pomortseva L.I. et al. Carrier mobility model for GaN. Solid-State Electron. 2003. 47. P. 111. https://doi.org/10.1016/S0038-1101(02)00256-3

31. Canali C., Majni G., Minder R., Ottaviani G. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans. Electron Devices. 1975. 22. P. 1045-1047. https://doi.org/10.1109/T-ED.1975.18267

32. Rhoderick E.H., Williams R.H. Metal-Semicon-ductor Contacts. Oxford, Clarendon Press, 1988.

33. Henisch H.K. Semiconductor Contacts. London, Oxford University, 1984.

34. Schmitz A.C., Ping A.T., Khan M.A. et al. Schottky barrier properties of various metals on n-type GaN. Semicond. Sci. Technol. 1996. 11. P. 1464. https://doi.org/10.1088/0268-1242/11/10/002

35. Monroy E., Calle F., Munoz E. et al. AlxGa1?xN:Si Schottky barrier photodiodes with fast response and high detectivity. Appl. Phys. Lett. 1998. 73. P. 2146. https://doi.org/10.1063/1.122405