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1. Introduction

Abstract. A number of novel two-dimensional materials and nanostructures demonstrate
complex single-electron energy dispersion, which is called the mexican-hat dispersion. In
this paper, we analyze interaction of a pair of electrons with such an energy dispersion. We
show that relative motion of the electron pair is of a very peculiar character. For example,
the real space trajectories corresponding to electron-electron scattering can have three
reversal points, reversal points at non-zero radial momentum and other unusual features.
Despite the repulsive Coulomb interaction, two electrons can be coupled forming a
composite quasi-particle — the bi-electron. The bi-electron corresponds to excited states of
the two-electron system. Because the bi-electron coupled states exist in continuum of
extended (free) states of the electron pair, these states are quasi-resonant and have finite
times of life. We found that rotating bi-electron is a long-living composite quasi-particle.
The rotating bi-electrons can be in motion. For slowly moving bi-electrons, we have
determined the kinetic energy and the effective mass. Due to strongly nonparabolic energy
dispersion, the translational motion of the bi-electron is coupled to its internal motion. This
results in effective masses dependent on quantum states of the bi-electron. In the paper,
properties of the bi-electron have been illustrated for the example of bigraphene in a
transverse electric field.

We have suggested that investigation of rotating bi-electrons at the mexican-hat single-
electron energy dispersion may bring new interesting effects in low-dimensional and low-
temperature physics.
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two-dimensional electrons are characterized by complex
€(p)-dependences that can be called the mexican-hat”

It is well known that the crystalline potential affects
motion of band electrons (holes) strongly modifying their
kinetic energy €(p), where p is the electron (hole)
momentum. Typically, near an extremum, e(p) is of a
parabolic dependence with an effective (generally
anisotropic) mass. For larger p, the nonparabolicity is
essential and a portion of the €(p) dependence with a
negative effective mass (d2e(p)/dp?<0) can exist.
Graphene — atomically thin layer of the carbon atoms —
provides the example of striking Kkinetic energy
modification of both electrons and holes, when the €(p)-
dependences have the linear quasi-relativistic behavior.
The bilayer graphene — bigraphene — represents even
more complex behavior of low energy e(p)-dependences,
which additionally can be controlled by external fields.
Recently, a few novel materials and nanostructures have
been fabricated for which, in the lower energy bands, the

(MH) energy dispersion. For the MH energy dispersion, a
local maximum occurs say at p = 0 and a portion with the
negative effective mass exists near this maximum. A
minimum value of €(p) is reached at the circle |p| = pm, at
larger p the function €(p) increases. The MH energy
dispersion is sketched in Fig. la. Examples of two-
dimensional materials and nanostructures with this type
of the energy dispersion include: bigraphene in a
transverse electric field (both, electron and hole bands)
[1, 2], hole bands in few-layers I11-VVI materials, such as
GaSe, GaS, InSe, InS and Bi,Tes, BiSes [3-6].
Also, the MH energy dispersion is characteristic for
HgTe/HgCdTe quantum wells (the upper hole band)
[7, 8], InAs/GaAs double quantum well structures [9],
the strained quantum well structures fabricated by I11-V
compound (the upper hole band), including strained
GaAs/AlGaAs and GaN/AIGaN structures, etc. These
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examples indicate that the single-electron energy
dispersion of the MH type is quite general phenomenon,
especially for two-dimensional systems.

For materials with the MH energy dispersion,
relative motion of the electron pair is very specific.
Particularly, a repulsive interaction potential can lead to
electron pairing, i.e. to formation of a composite quasi-
particle — a bi-electron.

The term “bi-electron” is known in solid-state
physics. It was introduced for the case of coupling of two
electrons originated from different energy bands, one of
them from the bottom of the lower conduction band and
the other from the top of an upper band with negative
curvature. So that, the reduced effective mass of the pair
can be negative, which can give rise to electron pairing in
spite of Coulomb repulsion. In particular, the bi-electron
model was applied to explain the inverse hydrogen-like
series of optical lines observed in layered Bils crystals
[10]. Another example of formation of bi-electrons near
the saddle points of the two-particle energy dispersion in
strong magnetic fields was analyzed in paper by Rashba
and Edelstein [11] (quasi-one-dimensional bi-electrons).
In both mentioned examples, coupled electrons were
originated from different energy bands, the models of the
energy dispersion were restricted to parabolic
dependences. Note, in composite structures —
semiconductor/metal — bi-electron can be formed due to
both image forces and spin-orbit interaction [12].

Recently, investigations of electron-electron
interaction in graphene-based two-dimensional systems
[13] sparked the interest to the bi-electron problem.
Indeed, in the paper [14] quasi-localized states of two
electrons were found to be possible. Then, the study
presented in paper [15] showed that two-electron states
can exist, if the single-electron energy dispersion
deviates from the linear Dirac-like spectrum. In the cited
paper, two-particle states were found for double-layer
graphene structures in the model with additional quad-
ratic momentum term with a negative effective mass.
This additional term was derived taking into account the

hopping of electrons between the next-nearest-neighbor
atoms. The absolute value of effective mass introduced
using this way was found about five times larger than the
free electron mass. Being applied to single layer or
bilayer graphene structures, this approach led to
unreasonably large coupling energy (~ 1 eV).

However, the same model applied to graphene
layers separated by boron nitride with the interlayer
Coulomb potential led to the coupling energies of the
order of tens meV. Further studies of this subject were
focused on electron-electron interaction in topological
insulators [16], electron pairing was analyzed in the four-
band model assuming a step-like repulsive potential.

In this paper, we revisite problems of interaction of
two electrons and bi-electron states formation in two-
dimensional systems. We assume that coupling energies
of pairing electrons are much lower than the energy
separation of considered single-electron band in the MH
type from other electron bands. We show that, despite the
repulsive Coulomb interaction, the two electrons with the
single-electron MH dispersion can be coupled forming
the excited states of two-electron system. We found that
the rotating bi-electrons are of long-living quasi-
particles. The rotating bi-electrons can be in translation
motion. For slowly moving bi-electron, we determined
the kinetic energy and the effective mass. The presented
model that exploits the single-electron energy band
facilitates the analysis of other important properties of
two-dimensional bi-electrons.

The model under consideration is formulated as
follows. We consider two-dimensional electron system,
when the electron momentum is p = {px, py}. We assume
that the e(p)-dependence is of the MH type, as illustrated
in Fig. 1a. This energy is an isotropic function in the
{px, py}-plane. For this type of €(p)-dependence, one can
introduce a few characteristic parameters: the inflection
point, pi(d2/dp?=0 at p=p,); the momentum pm,
corresponding to the energy minimum (de/dp = 0 at
p=pm) and the momentum p, corresponding to zero
energy (e (po) = 0 at py = 0), asillustrated in Fig. 1b.
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Fig. 1. (a) Sketch of the mexican-hat energy dispersion for a two-dimensional quasi-particle. (b) The energy € vs the momentum
magnitude p. (c) Illustrations to solutions of Eq. (12) — the I.h.s., de/d9, (the full curve) and the r.h.s., a/py, (thin lines) at different
Po; 1 — Po,1 < Poci 2 — Pp2> Poci 3 — Po3 > Po2. The curves 17, 2', 3’ represent the total energy, E(9s), defined by Eq. (15) for pe,1,
Po.2: Po,3, respectively. For py = py1, the line 1 does not cross the de/d9s-dependence and there are no singular points. For py,2, Pg.3,
intersections of the lines 2, 3 and the de/d9s-dependence define the singular points. Thin vertical lines show matching these

singular points and extrema of the E(9s)-dependences.
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For a pair of the interacting electrons, say 1 and 2,
the Hamiltonian is

H =e(p,)+c(p,)+U ), (1)

where U(|r]) > 0 is the potential of the electron-electron
interaction, and r = r;—r, is the relative distance
between the electrons. Introducing the total and relative
momenta for the two-electron system, P =p; +p, and
p = (p1—P2)/2, respectively, we rewrite Eg. (1) as
H = €(P/2 + p) + €(P/2—p) + U(Jr[). In the absence of
external lateral fields in the {X, y}-plane, the total
momentum is conserved, i.e., P =constant. Let the
center-of-mass for the pair be motionless, i.e., P=0.
Then, the Hamiltonian corresponding to relative motion
of the two electrons takes the form:

H, = 2¢(p)+U(r|)- )

This is the basic equation for quantitative analysis
given in the following Sections.

Here, we may use Eq. (2) to explain qualitatively
two-electron pairing effect at the MH energy dispersion.
Indeed, near the point p =0 one can simplify H, to the
form H = —p/2|M| + U, with M = 1/(d 2c(p)/dp|p:0) being
the negative “reduced” effective mass. The auxiliary
Hamiltonian, H' = —H, = p%2|M| — U, describes attractive
particles that can have coupled states with ‘energies’
E’' <0. Comparing H and H’, we can expect that for the
Hamiltonian of Eq. (2), coupled states may exist at the
energies E > 0. Since the pairing effect is due to the
negative effective mass, radii of coupled states (in real
space) have to be sufficiently large to provide (in the
momentum representation) the main contribution from
small relative momenta p, where the negative effective
mass occurs. Simultaneously, for the Hamiltonian of
Eqg. (2), at energies E >0 there exist also uncoupled
states of the electron pair, corresponding to electron-
electron scattering. For uncoupled states, the main
contribution comes from finite momenta p (in the
momentum representation). In the semiclassical picture,
coupled and uncoupled motions of these two electrons at
a given energy are independent: they correspond to
different initial conditions. While in the quantum picture,
there exists a tunneling between states of the same
energy. Therefore, sought-for states have to be quasi-
coupled and be characterized by a finite decay time.
Note, under rotation of the electron pair a finite
centrifugal potential gives rise to an increase of the
radius of a coupled state, which, in turn, rises its decay
time. Concluding this qualitative consideration, one can
expect that in the systems with the MH type electron
energy it is possible formation of composite quasi-
particles — bi-electrons. Bi-electron states are excited and
metastable states of the two-electron system. The rotating
bi-electrons should be long-living quasi-particles.

The rest of the paper is organized as follows. In
Section 2, we have presented semiclassical analysis of
the problem and give a classification of possible patterns
of two-electron motion, and illustrate the results by a few
particular models of the MH energy dispersion.

In Section 3, we have developed a quantum approach to
the problem, determined energies, wavefunctions, decay
times, and spins of these bi-electrons. Finally in this
Section, we have considered moving bi-electron. In
Section 4, we have discussed the obtained results and
presented numerical estimates with focus to the particular
example — the bi-layer graphene subjected to a transverse
electric field. A short summary of the overall results is
presented in Section 5.

2. Semiclassical consideration

2.1. Equations for relative motion of two electrons

We start with the semiclassical analysis. For such a case,
the Hamiltonian of Eq. (2) is a function of two variables,
absolute values of the two-dimensional vectors p and r:
Hy = Hy(p,r). It is convenient to use the polar
coordinates, {r, ¢}, instead of the orthogonal coordinates,
{x, v}, i.e., x =rcos ¢, y = rsin ¢. Then, instead of px and
py we introduce pr = pxCos ¢ + pysin ¢ and p,, = r(py cos ¢
— pxsin ¢) with p?=p?+pZ/r? . Obviously, ps is the
angular momentum of the pair of electrons. In the new
variables, {r, ¢} and {pr, ps}, EQ. (2) reads

Ho(p,,p¢,r,¢):26(‘/pf+pj/r2)+U(r). (3)

The corresponding equations of motion are:

dr_aHy_2p, de

dt op, 9 do p“’)’ ()

Eg{r(prlr

dp,  OHp 2p; de dU _ )
dt o r3pd9 dr 7Jp(pr,rp¢)

dp __aHy 2Py de (6)
dt  op, r?¢do

ap, oM, . (7)
dt a0

In these equations, t is the time, :—f) stands for the
g

derivative of the calculated at

p=9=\pf+pj/r?.

The repulsive potential is supposed to be of the
Coulomb type:

U)=%, >0 , ®)

function  €(p)

where o depends on the dielectric environment, ®; and
R, are designations for the right hand sides of Eqgs. (4)
and (5), respectively.

The system of Eqs (4)—(7) has the following
properties. Eq. (7) implies py = const, which means
conservation of the angular momentum. Eqgs. (4) and (5)
do not depend on the angle ¢. Thus, the radial motion of
the pair described by Eqs (4), (5) and its angular motion
described by Eqgs (6) and (7) are decoupled. If the radial
variables, r(t) and p«(t), are found, then ¢ and de/d9 are
known funcions of the time, t, and the angle variable,
¢(t), can be easily calculated by using Eq. (6).
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2.2. Phase-plane analysis

We shall focus on the equations for the radial motion (4),
(5), which compose an autonomous system of differential
equations for the variables r and pr. Such a system can be
studied in details by using the so-called phase-plane
analysis (see, for example, Ref. [18]). The phase-plane
analysis is based on simple reduction of this system to a
single differential equation of the first order:

dﬁ:&p(pr,d p¢) 9)
dr g{r(prlr|p¢)’

where the right-hand side (r.h.s.) is parametrically
dependent on py [19].

At a given py, any solution of Eqg. (9) can be
presented as a certain “trajectory” in the {r, pr}-phase
plane. In these equations, t is the time, dP stands for the
trajectory corresponds to a certain total energy, E. The
energy conservation law gives the implicit equation of
these trajectories, H(pr, r) =E. A chosen point in the
{r, pr}-phase plane can be interpreted as an initial
condition attributed to a time moment t'. The trajectory
that crosses this point determines the dynamics of the
electron pair at t > t'. By using Eqs (4) and (5), it is easy
to determine the direction of the trajectories. The singular
points of Eq. (9), if any, correspond to motion of the pair
with time-independent r and p, (rotation in real space
with a fixed angular velocity according to Eq. (6)). The
singular points can be either stable or unstable. Equating
the numerator and denominator in Eq. (9) to zero, we
obtain two isoclinal lines: a trajectory pr(r) crosses the
first isoclinal line always horizontally (dp,/dr = 0), while
the second isoclinal line is always crossed vertically
(dpr/dr = ). These properties of the trajectories allow
one to reconstruct readily the topology of the phase plane
and to study possible types of semiclassical relative
motion of the pair of the electrons.

For the singular points (r, p%), we obtain the
equations

P =0, (10
2Pp de _dU| o o gsPe (11)
(r5)3 de dr |, re

For a repulsive potential, we have dU/dr <0, thus
Eg. (11) may have solutions only at de/d?<0. In the
case of the energy dispersion shown in Fig. 1b, this leads
to the conditions: 9° < pm and r°> py/pm. Then, using
Eq. (8) and the relationship between ¢* and r°® we obtain
the following simple equation for & *:
gdel o (12)

dPlgs Py

Here only the left-hand side (I.h.s.) is varied with
@5, the r.h.s. is negative and depends parametrically on
the angular momentum py. For the MH energy
dispersion, the I.h.s. is negative at 9°< pn and reaches

a minimum at the inflection point, 9°=p;. Graphical
solutions of Eq. (12) are illustrated in Fig. 1c. These
solutions arise at
] (13)
pi

de
p(j) 2 p(b,c = O/I:ng)

At ps < pse, EQ. (12) has no solutions and, thus,
there are no singular points (see the illustration in Fig. 1c.
The corresponding phase portrait of Eq. (9) is shown in
Fig. 2a. Trajectories starting and ending at r— o
correspond to processes of electron-electron scattering
and can be called as scattering trajectories. Depending
on the total energy, E, there are three types of the
scattering trajectories. The type | encloses the trajectories
of the energy E > E,,

EC1=26(pm)+pi P (14)

0

Each of these trajectories is a continuous line,
which starts at r — c and pr — —p«(E) (with p(E) that
satisfies the condition 2¢(pr) = E), passes through lower
and upper parts of the phase-plane, and finishes with
positive pr — pr(E) at r — . The trajectory crosses the
r-axis only once at the coordinate r = rg, which can be
found from the equations:

p
rEzﬁ, E=2e(g>E)+pi¢.JE =W (9 ). (15)

For this type of the trajectories, W(4&)-dependence
is illustrated in Fig. 1c by the curve 1'. The trajectories
have a single reversal point (rg, 0) with rgz < pe/pm. At the
reversal point, the radial velocity changes its sign. The
type | of the phase-plane trajectories corresponds to usual
processes of elastic scattering in real space.

The type Il encloses trajectories of the energy
interval 0 < E < E,. At large r, they behave similarly to
the type I, however, they have unusual feature at finite r.
Indeed, for these trajectories there exist three reversal
points. For each of these trajectories, one of the reversal
point lies on the r-axis and is determined by Eqgs (15).

Two other ones are on the line p, =+ /pn21 - ps/rZ . For

a given energy E, the additional reversal points occur at

ad a

e T E 2¢(p,) |
ad _ 2 qu 2 (16)
pr,E =t Pm _?[E - 2€(pm )] ’

From Eg. (6), it follows that at the additional
reversal points, the angular velocity, d¢/dt, changes its
sign.

The trajectories with E <0 never cross the r-axis,
they can be attributed to the type Ill. For this case, there
are two solutions of the equation 2¢(p) = E, which we
denote p™(E) and pM(E) with p™ < pm < pM. This implies
the existence of two isolated trajectories for a given
negative E. One trajectory starts at infinity (r =) with
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Fig. 2. Phase portraits of Eq. (9) at different values of the
angular momentum, py. Solid lines are trajectories, dashed lines
(in (a) and (c)) correspond to the equation p? + p%/r?> = p. The
arrows indicate direction of motion along the trajectories. (a)
The case ps < psc; curves 1, 2 are scattering trajectories of the
type | and Il, respectively. Trajectories are presented for
different values of the total energy, E: curve 1 for E > E, the
type I; curve 2 for Ec; > E > 0, the type II; curves 3, 3’ for E <
0, the type IIl. (b) The case ps > pyc and ESL, E2 > Q; for two
singular points are marked with asterisks. Dotted line is the
separatrix closed loop restricting a region of the phase plane
with the closed trajectories. Curves 1, 2, 2’ are trajectories of
the scattering types | and Ill; curve 3 is an example of the
closed trajectories with ES! > E > E2, (c) The case py > ps.c and
ESt > 0, E®? < 0; curves 1, 2, 2', 3, 3' are trajectories of the
scattering types. The dotted line restricts the region with closed
trajectories. Curve 4 is an example of the closed trajectory for
Est>E>0.

pr= —p“(E). It has a reversal point given by Eq. (16)
with its sign in the second equation, remains in the lower
part of the (r, p:}-plane, and finishes at infinity with
pr=—p™(E). Another one starts at infinity with
pr=+p™(E) and finishes at infinity with p, = +pM(E).
Corresponding reversal point is determined by Eq. (16)
with its sign. Despite the elastic character of the
processes, these trajectories describe collisions that give
rise to a change of the relative momentum, p;, of the
electron pair.

Now, we return to the case when the inequality (13)
holds and Eq. (9) has singular points. The single such
point (rs = pe/pi, pr = 0) appears in the phase-plane at
P = Porc. When ps > pore, EQ. (11) has two solutions 95
and 92 with ?1<pi<?%<pn (see illustration in
Fig. 1c). Thus, there are two singular points (r®!, 0) and
(r2,0), r'>r2 Near a singular point (r%,0), the
trajectories corresponding to different energies E can be
found in the form:

1 de , (9°] d%
— pr +-—
Py ol(gPS)2

9° dg*

where E® is the total energy of relative motion of the
electron pair in the s-th singular point defined by the
second equation from (15): E® = E(%). For the sl-point

2
with 9& <o and _9°€
0 0 T
Eqg. (17), it follows that allowed energies are E < E® and
the trajectories are closed curves. That s,
the sl-point is the center. While for the s2-point with
de g ang _9€
"
This s2-point is the saddle one. The appearance of the
singular points leads to restructuring of the phase-plane.
There can exist two cases of different phase-plane
topologies.
For the first case, the phase-plane is presented in
Fig. 2b. For this case, both singular points correspond to
positive total energies, E¥, E? > 0, defined by Eq. (15) at
Pe = 951, 9%, as illustrated by the curve 2' in Fig. 1c. In
the phase-plane in Fig. 2b, two separatrices of the saddle
form a closed loop that restricts a finite region of the
phase-plane, where all the trajectories are closed. For
them, the total energy E is in the range E¥ > E > E® > 0.
For a given energy from this range, the minimal and
maximal coordinates, rn(E) and rm(E), which can be
reached on the closed trajectory, are to be found from Eq.
(15). Note, for the same energy range there are
trajectories of a scattering type. The latter are well
separated from the closed ones, as illustrated in Fig. 2b
by curves 1, 3. Outside the discussed energy range, all
the trajectories are of the scattering types, as was found
in the previous analysis.
Another case of the phase-plane topology is shown
in Fig. 2c. It occurs for E' > 0 > E%, as illustrated by the
curve 3’ in Fig. 1c. For other fixed parameters, this case

(r-r2f=e-E°, (17)

<0 (see Fig.1lc), from

>0, the trajectories are hyperboles.
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corresponds to larger angular momenta. Now the
separatrices of the s2-saddle are extended up to infinity;
they do not form any closed loop. Instead, the closed
trajectories exist for the energy interval E' > E > 0. For
E — +0, these closed trajectories are extended to
infinitely large r. With increase in py, the singular points

move toward largerr. At p, >> e one can
€
2p, o
p p=0
2 2 p
obtain r* zzd—s Po o p; and r? s —to Py . The
d p=0 o po

region of the phase-plane, which contains the closed
trajectories, also is shifted toward larger r. Under
discussed strong inequality, the Hamilonian of Eq. (3) is
simplified to the form

2

2, Py

[pr +?
p=0

]+°‘. (18)

r

Following the discussion presented in Introduction,
one can introduce the auxiliary Hamiltonian H! =—H,,

that can be easily reduced to that of the well known
Kepler problem. Detailed analysis of this problem can be
found elsewhere [20]. Particularly, from this analysis, it
follows that the closed trajectories exist for the energy

interval 0< E <E™ = a/4p§‘d2/dpz‘p:0-

Fig. 3. Trajectories in real space. (a) Scattering trajectories;
curves 1, 2 and 3, 3’ are scattering trajectories of the types I, II,
and 1ll, respectively; they correspond to the phase-plane
trajectories 1, 2 and 3, 3’ shown in Fig. 2a. (b) A real-space
trajectory illustrating bounded motion of the electron pair.
Dashed circles mark the minimal and maximal distances
between electrons.

Now consider briefly relative motion of the pair of
the electrons in real space. Trajectories in the {x, y}-real
space can be calculated, when solutions of Egs (4) and
(5), for r(t) and ¢(t), are found. Examples of the
scattering trajectories are shown in Fig. 3a. Among the
presented curves, only trajectory 1 has a standard form
for the process of scattering by a repulsive potential.
Shapes of the others are rather unusual, which is caused
by the complex energy dispersion of the MH type. For
example, the curve 2 represents scattering trajectory with
three reversal points, the curves 3, 3’ represent
trajectories with single reversal points occurring at a
finite radial momentum (matching these real-space
trajectories to those of the phase-plane is indicated in the
caption). Note, among trajectories belonging to the type
Il there are self-crossing trajectories in real space (not
shown in Fig. 3a).

The closed trajectories in the {r, p-}-phase-plane
correspond to relative motion of two electrons, which
occurs in a restricted region of real space. At a given
energy E, the real space trajectory lies in a ring bounded
by the circles of radii rm(E) and ry(E), both were defined
above. Generally, these trajectories are not closed, as
illustrated in Fig. 3b. At a given angular momentum pg,
the only closed real-space trajectory is a circular orbit
with the radius corresponding to the sl singular point:
r =t at E = ESL. The electron pair moves round this orbit
with the velocity Z‘dze/dpz‘p e The corresponding

—p,/r

rotation frequency is
_ For motion

QSl =2 rSle d 2
/ ( c/cp ‘P=p¢/r“ p=py/r*

with the energy E close to E®, the rotation occurs with
small radial vibrations. The frequency and magnitude of
these vibrations are equal to

dze/dpz‘

_2p? de d%e|
© ¥ \[dp dp?
2 sl
r,—r —2fa [ET-E (19)

s d?e/dp?]

where E <ES! and the derivatives are calculated at
p = pe/rst. Obviously, spatially bounded relative motion
of the two electrons means their coupling despite
repulsive interaction.

Summarizing, the general analysis showed that
the two-electron coupling in real space arises with the
onset of the singular points, s1, s2, in the {r, p.} phase-
plane of Eq (9). Egs (10), (11) and (15) for these points
facilitate the determination of the energies of ES!, E%,
corresponding to these points at a given angular
momentum, p. The two-electron coupling is realized
for the following interval of the total energy:
max{0, E?} < E < ESL,
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2.3. Numerical estimates

It is useful to conclude the semiclassical analysis with
numerical estimates. We rescale the variables as follows:

r
k=P =P ot i 2cl)
Ps ly.s I Eg
5 =10 g (k)42 (20)
Eg p
where we introduce the Bohr-like units:
Mo 7 Mo:? 1
=, Ig=—, Eg=—7+— ’ =T, .o
pB 7 B pB B hz Z‘d 2€/dp2‘p:0
Py = Pelg =h-

Here, M is the reduced mass of the pair at p — 0. In the
dimensionless form, Eqs (15) that define the singular
points are:

pe =l /s s &=8(3G )+ 3G 1, /1, =0 (36), (21)

where W(K) and K are the dimensionless analogs of
W(9) and 9 defined by Eqgs (15). Bellow, & presents the
dimensionless total energy of the pair. This formal
scaling to the Bohr units will allow us to compare the
results with those known from the quantum Coulomb
problem.

As the first example, we consider the simplest
model of the MH type energy dispersion, for which the
dimensionless kinetic energy of relative motion of the
electron pair is

8(k):—%k2+[3k4, B>0. (22)

The corresponding characteristic parameters (see Fig. 1b)

are: k=123, k =1/28, kn=Y2|B, &(kn) = 1/16p.
According to Eq. (13), the critical angular momentum
necessary for the existence of the singular points and the
closed trajectories equals 1, =1, . :3\/3_[5. For this ly, the
singular point in the {p, k,} phase-plane arises at k,s= 0,

Pse =23 (8sc= W(ki) = 1/48B).

If we assume B = 0.25, then we obtain: ki = 0.58,
km=1, Ko=1.41, &(km)=-0.25, loc=2.6, the energy
corresponding to the onset of the singular points is
&sc=0.08, and the radius of the emerging circular orbit is
psc~7.6. Setting ly=3, we found that the closed
trajectories occur in a finite energy interval,
0.05 < & < 0.06. In real space, all the closed trajectories
are located within the ring 4 <p <7.5. Setting =0.5,
we found ki = 0.41, kn = 0.7, &(kn) = —0.125, lyc = 3.67,
&sc=0.04 and psc=9. Assuming ly = 4, we found for the
closed trajectories 0.031<&<0.034 and 8 <p<13. At
ly=5, for the same characteristics we found 0 <& <0.02
and 8.8 < p < 22 for the closed trajectories.

These estimates illustrate that, increasing B and
shortening the negative effective mass, the portion of
&(k) leads to larger critical values of the angular
momentum, lyc, greater sizes of the coupled electron pair
and lower its energies of coupling.

As a second example of the energy dispersion of
MH type, we consider the lowest electron (or hole) band
of bigraphene subjected to a voltage applied across the
graphene layers. For this case, the one-particle energy is

[1]:
e(p)=
\/92/2+V2/4+ pzvé—\/g4/4+ p?v2 (gz+V2)

here, ve is the Fermi-velocity parameter of graphene,
g(= 0.4 eV) characterizes interaction between graphene
layers, and V is the voltage bias applied across the layers.
Assuming bigraphene on a substrate with a dielectric
constant ko, for the Coulomb potential (8) we obtain

a=2¢2 [(1+x,) with e, being the elementary charge.
Next, we introduce the scaling parameters as in Eqs (20)

» (23)

o - 59’ 2RV (L)
® oV, 0 ¢ e2g? '
e09” (24)
Eg=—r—r——. 4
T 2n?VAV Lk, )
The dimensionless two-particle energy

&(k) = 2[e(kps) — €(0)]/Ez at small k behaves as
&5(k) = k2 + ...

For further estimates, we set V=0.25eV
(corresponding energy gap of bigraphene is about
0.21eV) and ko = 3.9, the latter is valid for SiO;

substrate. We find

M =0.028m,, Eg =0.128€V , pg/hn=2.18-10°cm™,
rg =4.58-10 " cm. (25)

Here, mo is the free electron mass. The
characteristic parameters of the two-particle Kkinetic
energy &k) are: ki=0.62, knw=114, ko=1.74,
g(km) =—0.3 (i.e., =0.038eV). Then, we obtain the
critical value of the angular momentum, lyc=2.5, the
energy corresponding to the onset of the singular points,
&sc= W(ki) =0.09, and the radius of the emerging
circular orbit, ps~4.25. Setting lp =3, we find that the
closed trajectories occur in a finite energy interval,
0.04 <&<0.06 at 0.16 < K< 0.83 (see Eq.(21)). In
real space, all the closed trajectories are located within
the ring 3.6 < p <19. Setting Iy = 4, we found that these
trajectories occur at 0 < & < 0.03, % < 0.6 and the inter-
particle distance p > 6.6.

These estimates show that semiclassical trajectories
corresponding to spatially bound relative motion of the
two electrons exist only for finite values of the angular
momentum ly. That is, to be coupled the pair of electrons
has to rotate. The energy of the coupled electrons is
always positive and less than |e(km)|. Note, for any energy
corresponding to a trajectory of coupled motion there
always exists a trajectory of uncoupled motion. The
trajectories of coupled and uncoupled motion are well
separated in the {p, Ko} phase-space.
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3. Quantum analysis

Foregoing semiclassical analysis allowed wus to
understand qualitative features of relative motion of the
electron pair with the MH energy dispersion. However,
as can be seen from numerical estimates, it shows that
this analysis is not always adequate for quantitative
conclusions. Below we develop a quantum approach to
the problem under consideration.

For the quantum analysis, we assume that spin-orbit
interaction is negligible and orbital motion and spin
motion can be separated. First, we will focus on the
orbital motion.

3.1. Quantum equations for orbital motion of the
electron pair

We will use the dimensionless variables of Eq. (20) and,
particularly, the Hamiltonian 3( with 6(k) being the

function of the momentum operator R:—iai. Thus, in
o}

the coordinate representation the Schrdodinger equation

for relative motion of the electron pair is [21]

~ AT
ovlo)- |5+ £ )= ov() (20
Because of the circular symmetry of the problem,

we will use the polar coordinates p, ¢, then
¥(p)="Y¥(p,0) . The angular momentum operator is

[ =—i a% ; its eigenfunctions and eigenvalues are

1

¥ (¢)=—=—e™, 1=0,+1,+2, 27
10) N 27)

The operator I commutes with (o, thus we can set

¥(p.¢)=Ri(p) @, (9). (28)

Keeping in mind that the semiclassical analysis proves
the existence of rotating coupled electron pairs, below we
consider solutions to Eq. (26) with [I] > 1.

To obtain equation for the radial functions, R (p),
we use the following relationship valid for a two-
dimensional system:

k? R (P)(Dl (¢) =-A,R, (P)CDI (¢) =

=q>,(¢)|:_li 1+H R (). 29)

p
pdp dp
where A, is the two-dimensional Laplacian. Now, from

Eq. (26) we can formally write down the operator
equation for R, (p)

2
5 |:_lipi+l—2:| o1 Rip)=&Ri(p), (30)
pdp dp p P

where generally dependent on | eigenvalue, &, is
introduced.
To solve the operator equation (30), we will use the

: : 1d d 1°
eigenfunctions of the operator |-——p—+—|,
pdp dp p

which are known to be the Bessel function, J; (qp), [22]:
1d d I?
[———p—+p—z}3|(Qp)=q2J|(qr>)- (31)

Note, for arbitrary operator of the kinetic energy
8(k) the radial function of free particles with an energy
& can be also expressed via the Bessel function:

R1.5(p)=31(Gsp). (32)

where gs solves the equation &(gs) = &.
Below we will use Fourier—Hankel transformation
[23]:

Ri(a)= pop Ri(a)3:(ap)- (33)

It is important that, for functions in the form of Eqs
(27) and (28) with integer I, standard two-dimensional
Fourier transformation between real space and
momentum space,

¥p)=5- [a%a o), @(a)=- [0 ¥(o)

also leads to the relation (33) for the radial functions
R (p) and 2 (q). In particular, this is valid for solutions
of the well known two-dimensional Coulomb problem

with attractive potential, ®,(p) and &,(q) (see, for

example, Ref. [24]).
Now we transform Eq. (30) to the integral equation

[5(a)-& R (@)+ [da' @i (a.a)R (@) =0, (34)
0
with the symmetrical kernel
Q (@)= [dp 3 (a'p)3: (ap). (35)
0

For q' > ¢, the kernel explicit form is [22]:

1
) g,
Srasn (36)

szl[B, | +ﬂ,[1+|],%}.

Here, T(x) and , F, ([a, b],c, x) are the gamma and

hypergeometric functions, respectively. For ¢’'<(q, the
kernel can be obtained from Eq. (36) by permutation

Q(g.9)=
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q' < q. This permutation recovers the symmetry property
of the kernel Qi (g’, 0).

Eq. (34) is the equation for the radial function in
momentum space. It is important that in Eq. (34) &(q) is
the usual function, which according to scaling (20) at

small g behaves as &(q)~ —%qz +o

3.2. Approximate solutions for the wavefunctions

According to the above semiclassical analysis, in the
same energy interval, where closed trajectories (in the
phase-plane) of the electron pair occur, there also exist
trajectories of the uncoupled motion. Thus, in the
quantum analysis, we can expect a quasi-resonant
character of coupled states of the electron pair. We will
seek for solutions to Eg. (34) in the form

Ri(@)=> BrRin(a)+a,

where {R, ,(q)} is a set of given functions describing

37)

localized states. %, is a small contribution of unbound

(free) states of the pair, it will be analyzed in the
following subsection.

As a set of functions {ﬁm} we select the solutions
of the two-dimensional Coulomb problem with the
attractive potential. For the momentum representation,
detailed analysis of this problem has been done in the
papers [24]. Corresponding functions are solutions for
the equation

2076 [Rl0)- [eQaaIRA(@)-0. @9
0

with &, =-1/2(n+12f valid at n>|l|, ie, a given

nth-state of the two-dimensional Coulomb problem is
(2n + 1)-fold degenerated. The explicit expressions of

normalized functions , ,(q) are

n—|I|)!

ﬁI,n(q):(_l)lin2 (2n+1) n+||| I

2 2 _ 42
X Gn 72 @nl qg q2 )
(qﬁ+q2)3 Oy +0

X

(39)

where 9![x] is associated Legendre polynomials,

On = 1/(n + 1/2). One can show that, in momentum space
these wavefunctions are essentially concentrated within
the range of small momenta, q < 1/(n + 1/2). The degree
of localization of the functions in small g-range increases
for larger | and n.

Return to solutions of Eq. (34) in the form (37).
Multiplying Eq. (38) by —1 and comparing it with
Eqg. (34), we can see that for & >0 both equations are
quite similar, the only difference is more complex

dependence of &(q). Accordingly, for the coefficients B!
we obtain the following equations:

s[5 B, —z<ﬁ.fn

n'>|

1 .-
B0)+ Lo R,,n,>Bg, 0, (o)

where n>1 and <F_z|*n|j|3|n> mean the matrix element

calculated on the Coulomb states {l, n} and {I,»n}. In
this formulation, the difference of eigenvalues for the
considered problem from the Coulomb ones is expressed
via deviation of &(q) from the parabolic law.

Eqs (40) can be solved numerically for a given &(q)
dependence. Below we present results obtained for 6(q)
corresponding to Eq. (23) at parameters discussed in
Section 2 (bigraphene on SiO; substrate). The procedure
of solution of Eq. (40) is the following (Galerkin)
method. We use a finite number of the functions,

{Ri/Ri st -Rijiva) - This gives us v approximate
eigenvalues designated as gl(f’,\), y N=1 1+1, 1+2, ...

I+v—1 and corresponding eigenvectors {Bh(v)}. Then,
we increase the integer v until we reach the discrepancy
&1 —6%Y /6% <0.001, for four lower states with N =

I, ...l + 3. The obtained values & are presented in Table.
There, for comparison we also show four eigenvalues,
|&n,coul|, OF the two-dimensional Coulomb problem of
Eqg. (38).

Similarly to the Coulomb problem, one can consider
N as the “main quantum number”. However, unlike the
Coulomb problem we obtain an inverse series of the
energy levels: all quasi-bound states are excited states,
and larger main quantum number N corresponds to
smaller energy E|n. From the results of Table, one may

Table. Calculated energies, &in, broadenings, yin, and total spins, X, of different quasi-coupled states for the example of
bigraphene on SiO2 substrate discussed in the text. Energies of the Coulomb states, |&n,coul|, are presented for comparison.

N | &N, coul | &1 V1N X | &N Y2.N Z | &N YaN Z | &an YaN )

1 10222 | 0.337 | 0.176 1

2 |0.08 0.102 | 0.028 1 ]0.094 |0.001 0

3 10.041 | 0.048 | 0.007 1 |0.046 |4-10* 0 |0.044 |510°

4 10.025 | 0.027 | 0.002 1 | 0.027 1.5-10* |0 | 0.026 |3:10° 0.026 |<10°% |0
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see that for the problem under consideration the (2N + 1)-
fold angular momentum degeneracy, that is characteristic
for the Coulomb problem, is lifted, though two-fold
degeneracy of the states with £l remains (at | =0). For

any |, we obtain & y >[6y cou|- This is due to the fact

that the function |6(q)| is always less than the kinetic
energy for the Coulomb case, g%2. When I, N increase,
the found energies & n become closer to the Coulomb
analogs. This can be understood since with increase in
I, N, the wavevectors actual for formation of the quasi-
coupled states become smaller, and the difference
between functions |6(q)| and g%/2 diminishes.

For given I, N, the obtained coefficients {Bh} allow
us to calculate the radial wavefunctions, R, \(q), and the
total wavefunctions in the momentum space

D,y (0) = ——e R, (a), (41)

J2n

with g and ¢4 being the polar coordinates of the vector q.
Probability to find the electron pair in the {I, N}-bi-
electron state with the radial wavevector from the

interval g,q+dq is |R,YN(q]2qdq . The corresponding

probability density in series (37) is presented in Fig. 4a
for several long-living bi-electron states (see below the
estimates for the decay time of these states). One can see
that indeed the bi-electron wavefunctions are
concentrated within the region of small g, where the
effective mass of the single-electron spectrum is
essentially negative. The larger quantum numbers {I, N},
the smaller actual g. We found the average values of g
for different |, N-states: §,=065 , @,,=03 ,

QB,B =0.29 ) (34'4 =0.22.

The inverse Fourier—Hankel transformation gives
the radial wavefunctions in real space, R, \(p). We used

these functions to calculate the probability to find two
i . . 2
electrons within the interval p, p + dp, i.e., |R|’N (p] pdp .

Examples of corresponding probability densities are
shown in Fig. 4b. It is seen that the probability densities
are extended over large relative distances, p. The average
distances between the electrons in different {l, N}-states
are: py =27, Py =6.5, P33 =127, py 4 =225, etc.

3.3. Decay time calculations

As stressed above, the found {l, N}-bi-electron states
have to be quasi-stationary. They decay to free particle
states of the same energy. A formal approach to decay
time calculations can be found elsewhere [25].

According to this approach, to determine decay of
the found states we shall correct their energies and
wavefunctions. For example, in the coordinate represen-
tation we may use corrected wavefunctions in the form

¥y (p)= AURI,N(p)"'J.dgAQg{I,S(p)’ (42)

1y wig) txg
I=N=4

00 0.2 04 06 08 (a)
Ly [_p'jl|?><p
ﬂ,15— I.—.\-—Q
010+ I=N=3
[=N=4
0.05
0.00 . . . . . . [

Fig. 4. (a) Probability densities to find two electrons with the
relative momentum g. (b) Probability densities to find two
electrons at the relative distance p. Results are shown for long
living {I, N} bi-electron states.

where @, (p) is the radial functions of free particles

given by Eqg. (32), Ao, As are unknown coefficient and
function. Then, applying the perturbation method to
initial Eq. (30) we find these coefficients and an
imaginary correction to the energy, yin:

Oi,n |MI,N(qI,N )|2

, 43
EECYE “

RGN TN YIN=

where q  is defined by relationship 5(QI,N):8I,N , and

the matrix element is defined as follows

M (0)= 03 PR, 0)= [ R ()1

The calculated values of yin are presented in Table.
The decay factor yin defines broadening and the

lifetime of the two-electron coupled states,
‘Cld’e'\(l: :—h .
2y;n Eg

The results obtained for vy, are valid if

YN <<& ., When the energy level & \ is well defined.
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Note, for I = N = 0 we obtained y, \ >~ &\ , Which can

be interpreted as the nonexistence of such a state. For
I>1, we obtain v, \ /& y <1. This ratio rapidly decreases

with increase in I. For |, N>3, we find that
Yin /&N <10™*. This correlates with conclusions of the

semiclassical analysis made in Subsection 2.3 for the
same parameters: semi-classical closed trajectories arise
at 1>3. In addition, for finite values of the angular
momenta calculated energies, & n, belong to the same
energy intervals, for which the closed trajectories in the
phase-plane are predicted.

3.4. Spin states of coupled electrons

Consider briefly spin states of the coupled electron pair.
We neglect interaction between spins and orbital motion,
which allows us to present the total wavefunction of two
electrons as a product of orbital and spin wavefunctions:

\P(rlvclvrz’cz):\y(rl’rz)s(cllcz)!

where 61, o2 are the electron spins and S(o1, 62) is a spin
function. The Pauli exclusion principle states that for two
identical fermions the total wave function is anti-
symmetric with respect to exchange of the particles. It is
easy to find symmetry properties of the orbital
wavefunction of Eq. (28) with respect to permutation
ri — r2. Indeed, this permutation corresponds to
changing r — —r or, in the polar coordinates, {p, ¢}, to
substitution ¢ — ¢ + . The latter means that for the
states with even angular momentum | the orbital
wavefunction is symmetric, while those are anti-
symmetric for odd . Thus, to satisfy the Pauli exclusion
principle for even I, the spin function should be anti-
symmetric, which corresponds to total spin X of the
electron pair equals 0. For odd I, the spin function should
be symmetric, which implies that the total spin of the pair
equals 1.

3.5. Moving bi-electron

So far, we considered that the center-of-mass of the
electron pair is motionless, which is valid when the total
momentum of the pair, P, is zero. If P =0, the electron
pair is moving as a whole. For the nonparabolic energy
dispersion, €(p), this translational motion and relative
motion of the electrons in the pair cannot be separated.
However, assuming that P is small, we can estimate the
kinetic energy of the pair and its effective mass. In so
doing, we use the expansion of the Hamiltonian (1) in
series with respect to P:

1de , 1 [d% 1de
H =~ —— P +—|—-——|Pp) =
(|or)+4|OO||O +4p2{dp2 pdp}( pf

=Hy(p,r)+8H(p,P), (44)

where de/dp and d?e/dp? are functions of magnitude of the
relative momentum p; dH(p, P) is a correction to the
Hamiltonian Ho caused by motion of the center-of-mass.
Using the scaling of Eqgs (20), we rewrite this correction as

SH _1ds d% 1ds| . v
8%k, Q)=——=—-— -=— (k)
kQ) Eg 8k de Lkz kdk}(Q)

with Q = P/ps. Applying the perturbation theory method
[26] for the {l, N}-state of bi-electron, we obtain the
energy correction in the form:

88|,N(Q)=2®QI:‘N Mon :_J‘ q| IN(q] [dj qd_g:l

where 8 ,(Q) and 91, can be interpreted as the

dimensionless kinetic energy and the effective mass of
the bi-electron in the {l, N}-state. Dependence of the
effective mass of the bi-electron on its “internal” state is,
obviously, manifestation of interaction of center-of-mass
motion and internal relative motion.

Note, the wavefunctions R, (q) are mainly

localized in the range of small g, where both terms in Eq.

2
(45), ds and d f
dq dq

are negative. This implies that the
effective mass of the bi-electron should be also negative.

For the discussed example of bigraphene on the
SiO; substrate, the dimensionless effective masses of the
bi-electron in different {lI, N}-states are: 9iy1=-16.6,
Moo =—6, Maz=—4.8, 9ua4=—4.47. Note, for scaling
(20), the dimensionless mass of two non-interacting
electrons with ¢ — 0 equals —4. Thus bi-electrons are
“heavy” particles with negative masses.

4. Discussion

In this paper, we have analyzed interaction of two
electrons from the same energy band with the complex
single-particle energy dispersion. Both semiclassical and
guantum considerations have shown that two electrons
with the MH single-electron energy dispersion, €(p), can
form a composite quasi-particle — the bi-electron. The
coupling energies — energy of relative motion of the two
electrons — are positive (with respect to 2¢(0)). That is,
the bi-electron corresponds to an excited state of the
electron system. Bi-electron coupled states exist in the
continuum of extended (free) states inherent to the
electron pair. Thus, according to the quantum mechanics,
the found two-electron coupled states are of quasi-
resonant character and have finite times of life. Their
times of life increase with the increase of angular
momentum, thus more stable are the rotating bi-
electrons. The semiclassical analysis also leads to stable
coupled electron pair only at finite values of the angular
momentum. Besides, the semiclassical analysis showed
that relative motion of two electrons has a peculiar
character: depending on the energy and the angular
momentum (i.e., on the impact parameter), e-e scattering
can have three reversal points and reversal points at non-
zero radial momentum, etc.

The coupling energy, lifetime, angular momentum,
radius and other characteristics of the bi-electrons are
defined by the particular €(p)-dependence and dielectric
properties of the system. Let us discuss these parameters
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for the above considered example of bigraphene on the
SiO; substrate in the transverse electric field. Using the
scaling given in Eqgs (24), for relatively stable bi-electron

states one can find: Ezp=124meV, 3% =05ps ,
f,~29.8nm; Esz=5.6meV, {5 =1ns, f;;~58.2nm;

Esa=33meV, <& >5ns, ,, ~100nm, where Ein, T{'%
and r  are the bi-electron energy, lifetime and radius in

the {lI, N}-state, respectively. As seen, the quasi-coupled
states with large angular momenta (I >= 3) have
macroscopically long lifetimes. Note, just these coupled
bi-electron states are allowed in the semiclassical theory.
The sizes (radii) of these states are also large
(T >50nm), they increase o« N at N >> 1.

Note also, for the parameters discussed above the
distances to the upper valence band and the first excited
electron band are estimated to be 0.21 eV and 0.31 eV,
respectively, which are much larger than the found
coupling energies of the bi-electron, 0.012...0.003 eV.
That proves applicability of the single band
approximation used in this paper.

For the same bigraphene, varying the transverse
electric field and/or dielectric environment, one can change
parameters of the bi-electrons. As an example, consider
briefly the free-standing bigraphene, when one can set
ko = 1. Then, according to the scaling (24) at the voltage
bias of the same amplitude the coupling energies of the bi-
electrons should be larger than those discussed above by
factor (1 + «o,si02)%/4 = 6 and the corresponding radii of the
quantum states should be smaller by factor = 2.5.

The bi-electron can move as a whole. This
translational motion can be characterized by the total
momentum of the composite particle. At small values of
the total momentum, the Kinetic energy of the bi-electron
is a quadratic function of the momentum. Thus, one can
introduce an effective mass of the bi-electron. Due to
strongly nonparabolic character of the energy dispersion,
the translational motion is coupled to relative motion of
electrons composing the bi-electron. As the result, the
effective mass of bi-electron depends on its quantum
state. Using the scaling given by Eqgs (20) and results of
Subsection 3.5, for the analyzed example of bigraphene,
we obtain the following values of the effective mass:
—0.46mo for I=N=1;-0.17mo for | = N = 2; —0.13m, for
=N =3 and —0.12mo for | = N =4, while the effective
mass of a single electron at k = 0 equals —0.056m,. Thus,
the effective mass of the bi-electron is negative and
considerably varies with guantum numbers, I, N.

Above, properties of the bi-electron were illustrated
for the example of bigraphene in transverse electric field.
For this case, the MH single-electron energy spectrum is
induced by an external voltage. For realistic voltages,
critical parameters of the MH spectrum (pm, €(pm), M) are
such that energies of coupled states are relatively small
(£10 meV) and radii of states are large (=50 nm). For
two-dimensional crystals with intrinsic MH spectrum (for
example, 111-VI compounds [5, 6]), the characteristic
parameters are favorable for formation of the bi- particles
with larger coupling energies and stronger localization.

5. Summary

We analyzed interaction of a pair of electrons, which
are characterized by the mexican-hat single-electron
energy dispersion. We have showed that relative motion
of the electron pair is of a very peculiar character. For
example, the real space trajectories corresponding to
electron-electron scattering can have three reversal
points and reversal points at non-zero radial
momentum. These trajectories are strongly different
from the usual ones. Despite the repulsive Coulomb
interaction, two electrons can be coupled forming a
composite particle — the bi-electron. The bi-electron
corresponds to excited states of two-electron system.
The bi-electron coupled states exist in continuum of
extended (free) states inherent to the electron pair.
Thus, the found bi-electron states are of quasi-resonant
character and have finite lifetimes. We found that the
rotating bi-electron is the long-living composite
particle. When spin-orbital interaction is negligibly
small, the bi-electron states with even angular momenta
have zero spin (singlet states), while those with odd
angular momenta have unitary spin (triplet states). The
bi-electrons can be in translational motion. For a slowly
moving bi-electron, we have determined the Kinetic
energy and the effective mass of the composite particle.
Due to the strongly nonparabolic energy dispersion,
translational motion of the bi-electron is coupled to its
internal motion. This results in effective masses
depending on the quantum states of bi-electron.

The studied rotating bi-electron replenishes the list
of composite quasi-particles with the Coulomb inter-
action, which are already known for low-dimensional
structures, such as excitons, negatively and positively
charged excitons (trions) [27-29], and more complex
fractionally-charged quasi-particles (anyons) under the
fractional Hall effect [30], etc. Because there is a number
of indications that the mexican-hat single-electron energy
dispersion occurs for novel two-dimensional materials,
we have suggested that investigation of rotating bi-
electrons may bring new interesting effects in low-
dimensional and low-temperature physics.
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Bi-eneKTpOH, 1o OﬁepTaCTbCﬂ, y )]BOBl/IMile/IX CUCTEMAX 3 OJHO-€JIEKTPOHHOIO eHepricm THUIIY MEKCUKAHCBKOT'0
KamneJjarnxa

B.A. Kouegan

AHoTanis. Ps HOBUX TBOBUMIpHHMX MaTepialliB i HAHOCTPYKTYP JEMOHCTPYE CKIIAJIHY 3aJIeKHICTh OJHO-EIEKTPOHHOT
eHeprii Bij IMIyJbCy, sKa MOAIOHA MEKCHKAaHCBKOMY Karlemoxy. Y CTaTrTi NpOaHalli3oBaHO B3aEMOJII0 IMapu
CNIEKTPOHIB 3 TAKOI CHEPreTH4HOI0 aucrepciero. ITokazyemo, o BITHOCHHMH PyX €NEKTPOHHOI Iapu Mae Iyxe
cBOepinHuit xapakrtep. Hanpukian, TpaekTopii B peaJbHOMY NPOCTOPi, SKi BiANOBINAIOTH €IEKTPOH-EICKTPOHHOMY
PO3CIFOBaHHIO, MOXYTh MATH TPU TOYKH PO3BOPOTY, TOYKH PO3BOPOTY IIPH HEHYJIHOBOMY PalialbHOMY IMIYJIBCI Ta
iHIII He3BWYaliHI ocobOnmBocTi. He3Bakatoun Ha BiNIITOBXYBaJbHY KYJOHIBCBKY B3a€EMOJIO, JIBA €IEKTPOHH MOXKYTh
3’€IHYBATHUCS, YTBOPIOIOYHN CKIIAJHY KBa31YaCTHHKY — Oi-eJleKTpoH. bi-elekTpoH BignoBigae 30y KeHIM CTaHaM JIBO-
eJIeKTPOHHO1 cucTteMu. OCKUTBKH Oi-eeKTPOHHI 3B’s13aHi CTAHU iICHYIOTh Y KOHTHHYYMi BUTPHHX CTaHIB €IIEKTPOHHOI
napy, Il CTaHW € KBa3i-pe30HAHCHUMHU Ta MalOTh CKIHYEHHHI 4ac JXKUTTs. BusiBieHO, 1m0 Oi-eNeKTpOH, SKUi
o0epTaeThes, € JOBrOICHYIOUOI0 CKJIAIHOO KBa3idacTHHKOW. O0epTOBi Oi-eIeKTPOHU MOXYTh TiepedyBaru B pyci. Jlis
MOBIJTIBHOTO PyXy Oi-€JeKTPOHIB BH3HAYEHO KIHETHYHY eHeprito Ta edekTuBHy macy. Uepe3 CHIBHO HemapaOoNidHy
JIMCTIEPCiI0 eHepril MocTynalbHUK pyX Oi-eJIeKTPOHA € MOB’3aHNUM 3 HOro BHYTPIIIHIM pyxoM. Lle npuBoauTh 10 TOTO,
mo edekTHMBHAa Maca 3ajeXarhb BiJl KBAaHTOBHX CTaHIB Oi-eleKTpoHa. Y CTaTTi BIACTHBOCTI Oi-€JIEeKTpOHA
MPOLIFOCTPOBAHO HA NPUKIIaAl Oirpadeny, 10 SKOro NPUKIIAJAEHO MONEPevHe eIeKTPUIHE IoJIe.

Mu BBaXkaeMo, 10 JTOCIIKCHHS 00epTOBUX Oi-€IEKTPOHIB, IO YTBOPIOIOTHCS MPH OJHO-CICKTPOHHINA TUCTIepCii
eHeprii MmomiOHOI JO MEKCHKAHCHKOTO KallelioXa, MOXYTh BHSIBUTH HOBI IiKaBi eQekTH y (i3HIli JBOBHMIPHHUX
KPHCTAJIIB ITPU HU3BKUX TEMIIEPaTyp.

KJrouoBi cjioBa: 0i-elieKTpOH, EHepreTHUHa TUuctepcis, oirpade.
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