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Abstract. A number of novel two-dimensional materials and nanostructures demonstrate 

complex single-electron energy dispersion, which is called the mexican-hat dispersion. In 

this paper, we analyze interaction of a pair of electrons with such an energy dispersion. We 

show that relative motion of the electron pair is of a very peculiar character. For example, 

the real space trajectories corresponding to electron-electron scattering can have three 

reversal points, reversal points at non-zero radial momentum and other unusual features. 

Despite the repulsive Coulomb interaction, two electrons can be coupled forming a 

composite quasi-particle – the bi-electron. The bi-electron corresponds to excited states of 

the two-electron system. Because the bi-electron coupled states exist in continuum of 

extended (free) states of the electron pair, these states are quasi-resonant and have finite 

times of life. We found that rotating bi-electron is a long-living composite quasi-particle. 

The rotating bi-electrons can be in motion. For slowly moving bi-electrons, we have 

determined the kinetic energy and the effective mass. Due to strongly nonparabolic energy 

dispersion, the translational motion of the bi-electron is coupled to its internal motion. This 

results in effective masses dependent on quantum states of the bi-electron. In the paper, 

properties of the bi-electron have been illustrated for the example of bigraphene in a 

transverse electric field.  

We have suggested that investigation of rotating bi-electrons at the mexican-hat single-

electron energy dispersion may bring new interesting effects in low-dimensional and low-

temperature physics. 
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1. Introduction 

It is well known that the crystalline potential affects 

motion of band electrons (holes) strongly modifying their 

kinetic energy ϵ(p), where p is the electron (hole) 

momentum. Typically, near an extremum, ϵ(p) is of a 

parabolic dependence with an effective (generally 

anisotropic) mass. For larger p, the nonparabolicity is 

essential and a portion of the ϵ(p) dependence with a 

negative effective mass (d 2ϵ(p)/dp2 < 0) can exist. 

Graphene – atomically thin layer of the carbon atoms – 

provides the example of striking kinetic energy 

modification of both electrons and holes, when the ϵ(p)-

dependences have the linear quasi-relativistic behavior. 

The bilayer graphene – bigraphene – represents even 

more complex behavior of low energy ϵ(p)-dependences, 

which additionally can be controlled by external fields. 

Recently, a few novel materials and nanostructures have 

been fabricated for which, in the lower energy bands, the  
 

two-dimensional electrons are characterized by complex 
ϵ(p)-dependences that can be called the ”mexican-hat” 
(MH) energy dispersion. For the MH energy dispersion, a 
local maximum occurs say at p = 0 and a portion with the 
negative effective mass exists near this maximum. A 

minimum value of ϵ(p) is reached at the circle |p| = pm, at 

larger p the function ϵ(p) increases. The MH energy 
dispersion is sketched in Fig. 1a. Examples of two-
dimensional materials and nanostructures with this type 
of the energy dispersion include: bigraphene in a 
transverse electric field (both, electron and hole bands) 
[1, 2], hole bands in few-layers III-VI materials, such as 
GaSe, GaS, InSe, InS and Bi2Te3, Bi2Se3 [3–6].  
Also, the MH energy dispersion is characteristic for 
HgTe/HgCdTe quantum wells (the upper hole band)  
[7, 8], InAs/GaAs double quantum well structures [9],  
the strained quantum well structures fabricated by III-V 
compound (the upper hole band), including strained 
GaAs/AlGaAs and GaN/AlGaN structures, etc. These  
 



SPQEO, 2022. V. 25, No 3. P. 240-253. 

Kochelap V.A. Rotating bi-electron in two-dimensional systems with mexican-hat single-electron energy dispersion 
241 

examples indicate that the single-electron energy 

dispersion of the MH type is quite general phenomenon, 

especially for two-dimensional systems. 

For materials with the MH energy dispersion, 

relative motion of the electron pair is very specific. 

Particularly, a repulsive interaction potential can lead to 

electron pairing, i.e. to formation of a composite quasi-

particle – a bi-electron. 

The term “bi-electron” is known in solid-state 

physics. It was introduced for the case of coupling of two 

electrons originated from different energy bands, one of 

them from the bottom of the lower conduction band and 

the other from the top of an upper band with negative 

curvature. So that, the reduced effective mass of the pair 

can be negative, which can give rise to electron pairing in 

spite of Coulomb repulsion. In particular, the bi-electron 

model was applied to explain the inverse hydrogen-like 

series of optical lines observed in layered BiI3 crystals 

[10]. Another example of formation of bi-electrons near 

the saddle points of the two-particle energy dispersion in 

strong magnetic fields was analyzed in paper by Rashba 

and Edelstein [11] (quasi-one-dimensional bi-electrons). 

In both mentioned examples, coupled electrons were 

originated from different energy bands, the models of the 

energy dispersion were restricted to parabolic 

dependences. Note, in composite structures – 

semiconductor/metal – bi-electron can be formed due to 

both image forces and spin-orbit interaction [12]. 

Recently, investigations of electron-electron 

interaction in graphene-based two-dimensional systems 

[13] sparked the interest to the bi-electron problem. 

Indeed, in the paper [14] quasi-localized states of two 

electrons were found to be possible. Then, the study 

presented in paper [15] showed that two-electron states 

can exist, if the single-electron energy dispersion 

deviates from the linear Dirac-like spectrum. In the cited 

paper, two-particle states were found for double-layer 

graphene structures in the model with additional quad-

ratic momentum term with a negative effective mass. 

This additional term was derived taking into account the  

 

hopping of electrons between the next-nearest-neighbor 

atoms. The absolute value of effective mass introduced 

using this way was found about five times larger than the 

free electron mass. Being applied to single layer or 

bilayer graphene structures, this approach led to 

unreasonably large coupling energy (∼ 1 eV).  

However, the same model applied to graphene 

layers separated by boron nitride with the interlayer 

Coulomb potential led to the coupling energies of the 

order of tens meV. Further studies of this subject were 

focused on electron-electron interaction in topological 

insulators [16], electron pairing was analyzed in the four-

band model assuming a step-like repulsive potential.  

In this paper, we revisite problems of interaction of 

two electrons and bi-electron states formation in two-

dimensional systems. We assume that coupling energies 

of pairing electrons are much lower than the energy 

separation of considered single-electron band in the MH 

type from other electron bands. We show that, despite the 

repulsive Coulomb interaction, the two electrons with the 

single-electron MH dispersion can be coupled forming 

the excited states of two-electron system. We found that 

the rotating bi-electrons are of long-living quasi-

particles. The rotating bi-electrons can be in translation 

motion. For slowly moving bi-electron, we determined 

the kinetic energy and the effective mass. The presented 

model that exploits the single-electron energy band 

facilitates the analysis of other important properties of 

two-dimensional bi-electrons. 

The model under consideration is formulated as 

follows. We consider two-dimensional electron system, 

when the electron momentum is p = {px, py}. We assume 

that the ϵ(p)-dependence is of the MH type, as illustrated 

in Fig. 1a. This energy is an isotropic function in the 

{px, py}-plane. For this type of ϵ(p)-dependence, one can 

introduce a few characteristic parameters: the inflection 

point, pi (d 2ϵ/dp2 = 0 at p = pi); the momentum pm, 

corresponding to the energy minimum (dϵ/dp = 0 at 

p = pm) and the momentum p0, corresponding to zero 

energy (ϵ (p0) = 0 at p0  0), as illustrated in Fig. 1b. 

 
 

 

 

 

 

 

Fig. 1. (a) Sketch of the mexican-hat energy dispersion for a two-dimensional quasi-particle. (b) The energy ϵ vs the momentum 

magnitude p. (c) Illustrations to solutions of Eq. (12) – the l.h.s., dϵ/dPs, (the full curve) and the r.h.s., α/pϕ, (thin lines) at different 

pϕ; 1 – pϕ,1 < pϕ,c; 2 – pϕ,2 > pϕ,c; 3 – pϕ,3 > pϕ,2. The curves 1, 2, 3 represent the total energy, E(Pss), defined by Eq. (15) for pϕ,1, 

pϕ,2, pϕ,3, respectively. For pϕ = pϕ,1, the line 1 does not cross the dϵ/dPss-dependence and there are no singular points. For pϕ,2, pϕ,3, 

intersections of the lines 2, 3 and the dϵ/dPss-dependence define the singular points. Thin vertical lines show matching these 

singular points and extrema of the E(Pss)-dependences. 
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For a pair of the interacting electrons, say 1 and 2, 

the Hamiltonian is 

     rpp UH  21 єє ,     (1) 

where U(|r|) > 0 is the potential of the electron-electron 

interaction, and r = r1 – r2 is the relative distance 

between the electrons. Introducing the total and relative 

momenta for the two-electron system, P = p1 + p2 and 

p = (p1 – p2)/2, respectively, we rewrite Eq. (1) as  

H = ϵ(P/2 + p) + ϵ(P/2 – p) + U(|r|). In the absence of 

external lateral fields in the {x, y}-plane, the total 

momentum is conserved, i.e., P = constant. Let the 

center-of-mass for the pair be motionless, i.e., P = 0. 

Then, the Hamiltonian corresponding to relative motion 

of the two electrons takes the form: 

   rp UH  є20
.      (2) 

This is the basic equation for quantitative analysis 

given in the following Sections. 

Here, we may use Eq. (2) to explain qualitatively 

two-electron pairing effect at the MH energy dispersion. 

Indeed, near the point p = 0 one can simplify H0 to the 

form H ≈ −p/2|M| + U, with M = 1/(d 2ϵ(p)/dp|p = 0) being 

the negative “reduced” effective mass. The auxiliary 

Hamiltonian, H = −H0 = p2/2|M| − U, describes attractive 

particles that can have coupled states with ‘energies’ 

E < 0. Comparing H and H, we can expect that for the 

Hamiltonian of Eq. (2), coupled states may exist at the 

energies E > 0. Since the pairing effect is due to the 

negative effective mass, radii of coupled states (in real 

space) have to be sufficiently large to provide (in the 

momentum representation) the main contribution from 

small relative momenta p, where the negative effective 

mass occurs. Simultaneously, for the Hamiltonian of 

Eq. (2), at energies E > 0 there exist also uncoupled 

states of the electron pair, corresponding to electron-

electron scattering. For uncoupled states, the main 

contribution comes from finite momenta p (in the 

momentum representation). In the semiclassical picture, 

coupled and uncoupled motions of these two electrons at 

a given energy are independent: they correspond to 

different initial conditions. While in the quantum picture, 

there exists a tunneling between states of the same 

energy. Therefore, sought-for states have to be quasi-

coupled and be characterized by a finite decay time. 

Note, under rotation of the electron pair a finite 

centrifugal potential gives rise to an increase of the 

radius of a coupled state, which, in turn, rises its decay 

time. Concluding this qualitative consideration, one can 

expect that in the systems with the MH type electron 

energy it is possible formation of composite quasi-

particles – bi-electrons. Bi-electron states are excited and 

metastable states of the two-electron system. The rotating 

bi-electrons should be long-living quasi-particles. 

The rest of the paper is organized as follows. In 

Section 2, we have presented semiclassical analysis of 

the problem and give a classification of possible patterns 

of two-electron motion, and illustrate the results by a few 

particular models of the MH energy dispersion.  
 

In Section 3, we have developed a quantum approach to 

the problem, determined energies, wavefunctions, decay 

times, and spins of these bi-electrons. Finally in this 

Section, we have considered moving bi-electron. In 

Section 4, we have discussed the obtained results and 

presented numerical estimates with focus to the particular 

example – the bi-layer graphene subjected to a transverse 

electric field. A short summary of the overall results is 

presented in Section 5. 

2. Semiclassical consideration 

2.1. Equations for relative motion of two electrons 

We start with the semiclassical analysis. For such a case, 

the Hamiltonian of Eq. (2) is a function of two variables, 

absolute values of the two-dimensional vectors p and r: 

H0 = H0(p, r). It is convenient to use the polar 

coordinates, {r, ϕ}, instead of the orthogonal coordinates, 

{x, y}, i.e., x = rcos ϕ, y = rsin ϕ. Then, instead of px and 

py we introduce pr = px cos ϕ + py sin ϕ and pϕ = r(py cos ϕ 

− px sin ϕ) with 2222 rppp r  . Obviously, p is the 

angular momentum of the pair of electrons. In the new 

variables, {r, ϕ} and {pr, p}, Eq. (2) reads  

     rUrpprppH rr  

222

0 є2,,, .    (3) 

The corresponding equations of motion are: 

 



 prp

d

dp

p

H

dt

dr
rr

r

r

,
є20 R
PP

,     (4) 

 





 prp

dr

dU

d

d

r

p

r

H

dt

dp
rp

r ,
є2

3

2

0 R
PP

,    (5) 

PP d

d

r

p

p

H

dt

d є2

2

0 









 ,      (6) 

00 





 H

dt

dp .       (7) 

In these equations, t is the time, 
Pd

dє
 stands for the 

derivative of the function ϵ(p) calculated at 

222 rppp r  P .  

The repulsive potential is supposed to be of the 

Coulomb type: 

  0, 



r

rU  ,      (8) 

where α depends on the dielectric environment, Rr and 

Rp are designations for the right hand sides of Eqs. (4) 

and (5), respectively. 

The system of Eqs (4)–(7) has the following 

properties. Eq. (7) implies p = const, which means 

conservation of the angular momentum. Eqs. (4) and (5) 

do not depend on the angle ϕ. Thus, the radial motion of 

the pair described by Eqs (4), (5) and its angular motion 

described by Eqs (6) and (7) are decoupled. If the radial 

variables, r(t) and pr(t), are found, then P and dϵ/dP are 

known funcions of the time, t, and the angle variable, 

ϕ(t), can be easily calculated by using Eq. (6). 
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2.2. Phase-plane analysis 

We shall focus on the equations for the radial motion (4), 

(5), which compose an autonomous system of differential 

equations for the variables r and pr. Such a system can be 

studied in details by using the so-called phase-plane 

analysis (see, for example, Ref. [18]). The phase-plane 

analysis is based on simple reduction of this system to a 

single differential equation of the first order: 

 
 

,
,

,






prp

prp

dr

dp

rr

rpr

R

R
      (9) 

where the right-hand side (r.h.s.) is parametrically 

dependent on p [19]. 

At a given p, any solution of Eq. (9) can be 

presented as a certain “trajectory” in the {r, pr}-phase 

plane. In these equations, t is the time, dP stands for the 

trajectory corresponds to a certain total energy, E. The 

energy conservation law gives the implicit equation of 

these trajectories, H(pr, r) = E. A chosen point in the 

{r, pr}-phase plane can be interpreted as an initial 

condition attributed to a time moment t. The trajectory 

that crosses this point determines the dynamics of the 

electron pair at t > t. By using Eqs (4) and (5), it is easy 

to determine the direction of the trajectories. The singular 

points of Eq. (9), if any, correspond to motion of the pair 

with time-independent r and pr (rotation in real space 

with a fixed angular velocity according to Eq. (6)). The 

singular points can be either stable or unstable. Equating 

the numerator and denominator in Eq. (9) to zero, we 

obtain two isoclinal lines: a trajectory pr(r) crosses the 

first isoclinal line always horizontally (dpr /dr = 0), while 

the second isoclinal line is always crossed vertically 

(dpr /dr = ∞). These properties of the trajectories allow 

one to reconstruct readily the topology of the phase plane 

and to study possible types of semiclassical relative 

motion of the pair of the electrons. 

For the singular points (rs, ps), we obtain the 

equations 

,0s

rp      (10) 

  s

s

r
s r

p

dr

dU

d

d

r

p

s


 PP

P
at0

є2

3
.  (11) 

For a repulsive potential, we have dU/dr < 0, thus 

Eq. (11) may have solutions only at dϵ/dP < 0. In the 

case of the energy dispersion shown in Fig. 1b, this leads 

to the conditions: P s < pm and rs > p /pm. Then, using 

Eq. (8) and the relationship between P s and rs we obtain 

the following simple equation for P s: 






pd

d

s
PP

є
2 .     (12) 

Here only the left-hand side (l.h.s.) is varied with 

P s, the r.h.s. is negative and depends parametrically on 

the angular momentum p. For the MH energy 

dispersion, the l.h.s. is negative at P s < pm and reaches  
 

a minimum at the inflection point, P s = pi. Graphical 

solutions of Eq. (12) are illustrated in Fig. 1c. These 

solutions arise at 














 

ip

с
d

d
pp

P

є
2,

.    (13) 

At p < p,c, Eq. (12) has no solutions and, thus, 

there are no singular points (see the illustration in Fig. 1c. 

The corresponding phase portrait of Eq. (9) is shown in 

Fig. 2a. Trajectories starting and ending at r → ∞ 

correspond to processes of electron-electron scattering 

and can be called as scattering trajectories. Depending 

on the total energy, E, there are three types of the 

scattering trajectories. The type I encloses the trajectories 

of the energy E > Ec1, 

  mmc p
p

pE



 є21

.    (14) 

Each of these trajectories is a continuous line, 

which starts at r → ∞ and pr → −pr(E) (with pr(E) that 

satisfies the condition 2ϵ(pr) = E), passes through lower 

and upper parts of the phase-plane, and finishes with 

positive pr → pr(E) at r → ∞. The trajectory crosses the 

r-axis only once at the coordinate r = rE, which can be 

found from the equations: 

   EEE
E

E W
p

E
p

r PPP
P








є2, .  (15) 

For this type of the trajectories, W(PE)-dependence 

is illustrated in Fig. 1c by the curve 1. The trajectories 

have a single reversal point (rE, 0) with rE < p/pm. At the 

reversal point, the radial velocity changes its sign. The 

type I of the phase-plane trajectories corresponds to usual 

processes of elastic scattering in real space. 

The type II encloses trajectories of the energy 

interval 0 < E < Ec1. At large r, they behave similarly to 

the type I, however, they have unusual feature at finite r. 

Indeed, for these trajectories there exist three reversal 

points. For each of these trajectories, one of the reversal 

point lies on the r-axis and is determined by Eqs (15). 

Two other ones are on the line 222 rppp mr  . For 

a given energy E, the additional reversal points occur at 

 m

ad

Er
pE

r
є2

,



 , 

  2
2

2

2

, є2 mm

ad

Er pE
p

pp 



 .   (16) 

From Eq. (6), it follows that at the additional 

reversal points, the angular velocity, dϕ/dt, changes its 

sign.  

The trajectories with E < 0 never cross the r-axis, 

they can be attributed to the type III. For this case, there 

are two solutions of the equation 2ϵ(p) = E, which we 

denote pm(E) and pM(E) with pm < pm < pM. This implies 

the existence of two isolated trajectories for a given 

negative E. One trajectory  starts at  infinity  (r ≈ ∞)  with  
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Fig. 2. Phase portraits of Eq. (9) at different values of the 

angular momentum, p. Solid lines are trajectories, dashed lines 

(in (a) and (c)) correspond to the equation p2 + p2/r2 = p. The 

arrows indicate direction of motion along the trajectories. (a) 

The case p < p,c ; curves 1, 2 are scattering trajectories of the 

type I and II, respectively. Trajectories are presented for 

different values of the total energy, E: curve 1 for E > Ec1, the 

type I; curve 2 for Ec1 > E > 0, the type II; curves 3, 3 for E < 

0, the type III. (b) The case p > p,c and Es1, Es2 > 0; for two 

singular points are marked with asterisks. Dotted line is the 

separatrix closed loop restricting a region of the phase plane 

with the closed trajectories. Curves 1, 2, 2 are trajectories of 

the scattering types I and III; curve 3 is an example of the 

closed trajectories with Es1 > E > Es2. (c) The case p > p,c and 

Es1 > 0, Es2 < 0; curves 1, 2, 2, 3, 3 are trajectories of the 

scattering types. The dotted line restricts the region with closed 

trajectories. Curve 4 is an example of the closed trajectory for 

Es1 > E > 0.  

pr = −pM(E). It has a reversal point given by Eq. (16) 

with its sign in the second equation, remains in the lower 

part of the (r, pr}-plane, and finishes at infinity with 

pr = −pm(E). Another one starts at infinity with 

pr = +pm(E) and finishes at infinity with pr = +pM(E). 

Corresponding reversal point is determined by Eq. (16) 

with its sign. Despite the elastic character of the 

processes, these trajectories describe collisions that give 

rise to a change of the relative momentum, pr, of the 

electron pair. 

Now, we return to the case when the inequality (13) 

holds and Eq. (9) has singular points. The single such 

point (rs = p/pi, pr = 0) appears in the phase-plane at 

p = p,c. When p > p,c, Eq. (11) has two solutions P s1 

and P s2 with P s1 < pi < P s2 < pm (see illustration in 

Fig. 1c). Thus, there are two singular points (rsl, 0) and 

(rs2, 0), rsl > rs2. Near a singular point (rs, 0), the 

trajectories corresponding to different energies E can be 

found in the form:  

 
 

  s

s

s

rss
EErr

d

d

p
p

d

d




22

2

2

2

4

2 єє1

P

P

PP
, (17) 

where Es is the total energy of relative motion of the 
electron pair in the s-th singular point defined by the 

second equation from (15): Es = E(P s). For the sl-point 

with 0
є


sd

d

P
 and 

 
0

є
2

2


sd

d

P

 (see Fig. 1c), from 

Eq. (17), it follows that allowed energies are E < Es and 
the trajectories are closed curves. That is,  
the sl-point is the center. While for the s2-point with 

0
є


sd

d

P
 and 

 
0

є
2

2


sd

d

P

, the trajectories are hyperboles. 

This s2-point is the saddle one. The appearance of the 
singular points leads to restructuring of the phase-plane. 
There can exist two cases of different phase-plane 
topologies. 

For the first case, the phase-plane is presented in 

Fig. 2b. For this case, both singular points correspond to 

positive total energies, Esl, Es2 > 0, defined by Eq. (15) at 

PE = P s1, P s2, as illustrated by the curve 2' in Fig. 1c. In 

the phase-plane in Fig. 2b, two separatrices of the saddle 

form a closed loop that restricts a finite region of the 

phase-plane, where all the trajectories are closed. For 

them, the total energy E is in the range Esl > E > Es2 > 0. 

For a given energy from this range, the minimal and 

maximal coordinates, rm(E) and rM(E), which can be 

reached on the closed trajectory, are to be found from Eq. 

(15). Note, for the same energy range there are 

trajectories of a scattering type. The latter are well 

separated from the closed ones, as illustrated in Fig. 2b 

by curves 1, 3. Outside the discussed energy range, all 

the trajectories are of the scattering types, as was found 

in the previous analysis. 

Another case of the phase-plane topology is shown 

in Fig. 2c. It occurs for Esl > 0 > Es2, as illustrated by the 

curve 3 in Fig. 1c. For other fixed parameters, this case  
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corresponds to larger angular momenta. Now the 

separatrices of the s2-saddle are extended up to infinity; 

they do not form any closed loop. Instead, the closed 

trajectories exist for the energy interval Esl ≥ E > 0. For 

E → +0, these closed trajectories are extended to 

infinitely large r. With increase in p, the singular points 

move  toward  larger r.  At  

0

2

2є
2








p

i
dp

d
p

p

 

  one  can 

obtain 
2

2

0

2

2
1 є

2 








 p
p

dp

d
r

p

s
 and 


 p

p

p
r s

0

2
. The 

region of the phase-plane, which contains the closed 

trajectories, also is shifted toward larger r. Under 

discussed strong inequality, the Hamilonian of Eq. (3) is 

simplified to the form 

rr

p
p

dp

d
H r

p























2

2

2

0

2

2

0

є
.    (18) 

Following the discussion presented in Introduction, 

one can introduce the auxiliary Hamiltonian 
00 HH  , 

that can be easily reduced to that of the well known 

Kepler problem. Detailed analysis of this problem can be 

found elsewhere [20]. Particularly, from this analysis, it 

follows that the closed trajectories exist for the energy 

interval 
0

2221 40



p

s dpdpEE . 

 

 

 
 
Fig. 3. Trajectories in real space. (a) Scattering trajectories; 

curves 1, 2 and 3, 3 are scattering trajectories of the types I, II, 

and III, respectively; they correspond to the phase-plane 

trajectories 1, 2 and 3, 3 shown in Fig. 2a. (b) A real-space 

trajectory illustrating bounded motion of the electron pair. 

Dashed circles mark the minimal and maximal distances 

between electrons. 

Now consider briefly relative motion of the pair of 

the electrons in real space. Trajectories in the {x, y}-real 

space can be calculated, when solutions of Eqs (4) and 

(5), for r(t) and ϕ(t), are found. Examples of the 

scattering trajectories are shown in Fig. 3a. Among the 

presented curves, only trajectory 1 has a standard form 

for the process of scattering by a repulsive potential. 

Shapes of the others are rather unusual, which is caused 

by the complex energy dispersion of the MH type. For 

example, the curve 2 represents scattering trajectory with 

three reversal points, the curves 3, 3 represent 

trajectories with single reversal points occurring at a 

finite radial momentum (matching these real-space 

trajectories to those of the phase-plane is indicated in the 

caption). Note, among trajectories belonging to the type 

II there are self-crossing trajectories in real space (not 

shown in Fig. 3a). 

The closed trajectories in the {r, pr}-phase-plane 

correspond to relative motion of two electrons, which 

occurs in a restricted region of real space. At a given 

energy E, the real space trajectory lies in a ring bounded 

by the circles of radii rm(E) and rM(E), both were defined 

above. Generally, these trajectories are not closed, as 

illustrated in Fig. 3b. At a given angular momentum pϕ, 

the only closed real-space trajectory is a circular orbit 

with the radius corresponding to the s1 singular point: 

r = rs1 at E = Es1. The electron pair moves round this orbit 

with the velocity 
1

22є2
srpp

dpd


. The corresponding 

rotation frequency is 

.єє2
11

222211

ss rpprpp

ss dpddpdr
 









  For motion 

with the energy E close to Es1, the rotation occurs with 

small radial vibrations. The frequency and magnitude of 

these vibrations are equal to 

2

2

231

21
єє2

dp

d

dp

d

r

p

s
r


 , 

22

12

1

є
2

dpd

EE

p

r
rr

s

s
mM






,   (19) 

where E < Es1 and the derivatives are calculated at  

p = pϕ /rs1. Obviously, spatially bounded relative motion 

of the two electrons means their coupling despite 

repulsive interaction. 

Summarizing, the general analysis showed that 

the two-electron coupling in real space arises with the 

onset of the singular points, s1, s2, in the {r, pr} phase-

plane of Eq (9). Eqs (10), (11) and (15) for these points 

facilitate the determination of the energies of Es1, Es2, 

corresponding to these points at a given angular 

momentum, p. The two-electron coupling is realized  

for the following interval of the total energy:  

max{0, Es2} < E < Es1. 
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2.3. Numerical estimates 

It is useful to conclude the semiclassical analysis with 

numerical estimates. We rescale the variables as follows: 

Bp

p
k  , 

B,



 
l

p
l , 

Br

r
ρ  ,  

 

B

є
2

Е

p
k  , 

 



1

B

0
0 k

Е

H
H  ,    (20) 

where we introduce the Bohr-like units: 






M
pB

, 
B

B
p

r


 , 
2

2

B





M
Е , 

0

22є2

1





p
dpd

M , 

hrpp  BBB, . 

Here, M is the reduced mass of the pair at p → 0. In the 

dimensionless form, Eqs (15) that define the singular 

points are:  

EE K l ,      EEE
KWKKE   ll ,  (21) 

where W(K) and KE are the dimensionless analogs of 

W(P) and PE defined by Eqs (15). Bellow, E presents the 

dimensionless total energy of the pair. This formal 
scaling to the Bohr units will allow us to compare the 
results with those known from the quantum Coulomb 
problem. 

As the first example, we consider the simplest 
model of the MH type energy dispersion, for which the 
dimensionless kinetic energy of relative motion of the 
electron pair is  

  .0,
2

1 42  kkkE     (22) 

The corresponding characteristic parameters (see Fig. 1b) 

are: ,321 ik  ,210 k  ,21 mk  E(km) = 1/16β. 

According to Eq. (13), the critical angular momentum 
necessary for the existence of the singular points and the 

closed trajectories equals   33,сll . For this l, the 

singular point in the {ρ, kρ} phase-plane arises at kρ,s = 0, 

 32,сs  (Es,c = W(ki) = 1/48β). 

If we assume β = 0.25, then we obtain: ki = 0.58, 

km = 1, k0 = 1.41, E(km) = −0.25, l,c = 2.6, the energy 

corresponding to the onset of the singular points is 

Es,c = 0.08, and the radius of the emerging circular orbit is 

ρs,c ≈ 7.6. Setting l = 3, we found that the closed 
trajectories occur in a finite energy interval, 

0.05 < E < 0.06. In real space, all the closed trajectories 

are located within the ring 4 ≤ ρ ≤ 7.5. Setting β = 0.5, 

we found ki = 0.41, km = 0.7, E(km) = −0.125, l,c = 3.67, 

Es,c = 0.04 and ρs,c = 9. Assuming l = 4, we found for the 

closed trajectories 0.031 ≤ E ≤ 0.034 and 8 ≤ ρ ≤ 13. At 

l = 5, for the same characteristics we found 0 ≤ E ≤ 0.02 

and 8.8 ≤ ρ ≤ 22 for the closed trajectories. 
These estimates illustrate that, increasing β and 

shortening the negative effective mass, the portion of 

E(k) leads to larger critical values of the angular 

momentum, l,c, greater sizes of the coupled electron pair 
and lower its energies of coupling. 

As a second example of the energy dispersion of 

MH type, we consider the lowest electron (or hole) band 

of bigraphene subjected to a voltage applied across the 

graphene layers. For this case, the one-particle energy is 

[1]: 

 

 222
F

242
F

222 442

є

VgvpgvpVg

p





, (23) 

here, vF is the Fermi-velocity parameter of graphene, 

g(≈ 0.4 eV) characterizes interaction between graphene 

layers, and V is the voltage bias applied across the layers. 

Assuming bigraphene on a substrate with a dielectric 

constant κ0, for the Coulomb potential (8) we obtain 

 0
2
0 12  е  with e0 being the elementary charge. 

Next, we introduce the scaling parameters as in Eqs (20) 
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.    (24) 

The dimensionless two-particle energy 

E(k) = 2[ϵ(kpB) − ϵ(0)]/EB at small k behaves as 

E(k) ≈ −k2/2 + .... 

For further estimates, we set V = 0.25 eV 

(corresponding energy gap of bigraphene is about 

0.21 eV) and κ0 = 3.9, the latter is valid for SiO2 

substrate. We find  

0028.0 mM  , eV128.0B E , 16
B сm1018.2 p , 

сm1058.4 7
B

r .    (25) 

Here, m0 is the free electron mass. The 

characteristic parameters of the two-particle kinetic 

energy ε(k) are: ki = 0.62, km = 1.14, k0 = 1.74, 

ε(km) = −0.3 (i.e., ≈ 0.038 eV). Then, we obtain the 

critical value of the angular momentum, l,c = 2.5, the 

energy corresponding to the onset of the singular points, 

Es,c = W(ki) = 0.09, and the radius of the emerging 

circular orbit, ρs ≈ 4.25. Setting l = 3, we find that the 

closed trajectories occur in a finite energy interval, 

0.04 < E < 0.06 at 0.16 < KE < 0.83 (see Eq. (21)). In 

real space, all the closed trajectories are located within 

the ring 3.6 ≤ ρ ≤ 19. Setting l = 4, we found that these 

trajectories occur at 0 < E < 0.03, KE < 0.6 and the inter-

particle distance ρ > 6.6. 

These estimates show that semiclassical trajectories 

corresponding to spatially bound relative motion of the 

two electrons exist only for finite values of the angular 

momentum l. That is, to be coupled the pair of electrons 

has to rotate. The energy of the coupled electrons is 

always positive and less than |ε(km)|. Note, for any energy 

corresponding to a trajectory of coupled motion there 

always exists a trajectory of uncoupled motion. The 

trajectories of coupled and uncoupled motion are well 

separated in the {ρ, kρ} phase-space. 
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3. Quantum analysis 

Foregoing semiclassical analysis allowed us to 

understand qualitative features of relative motion of the 

electron pair with the MH energy dispersion. However, 

as can be seen from numerical estimates, it shows that 

this analysis is not always adequate for quantitative 

conclusions. Below we develop a quantum approach to 

the problem under consideration. 

For the quantum analysis, we assume that spin-orbit 

interaction is negligible and orbital motion and spin 

motion can be separated. First, we will focus on the 

orbital motion. 

3.1. Quantum equations for orbital motion of the 

electron pair 

We will use the dimensionless variables of Eq. (20) and, 

particularly, the Hamiltonian H0 with  k̂E  being the 

function of the momentum operator 



 ik̂ . Thus, in 

the coordinate representation the Schrödinger equation 

for relative motion of the electron pair is [21] 

       









 EEH

1ˆˆ
0 k    (26) 

Because of the circular symmetry of the problem, 

we will use the polar coordinates ρ, ϕ, then 

    ,ρ . The angular momentum operator is 




 il̂ ; its eigenfunctions and eigenvalues are 

  2,1,0,
2

1



  le il

l ,   (27) 

The operator l̂  commutes with H0, thus we can set 

      llR, .    (28) 

Keeping in mind that the semiclassical analysis proves 

the existence of rotating coupled electron pairs, below we 

consider solutions to Eq. (26) with |l| ≥ 1. 

To obtain equation for the radial functions, Rl (ρ), 

we use the following relationship valid for a two-

dimensional system: 
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   (29) 

where ∆2 is the two-dimensional Laplacian. Now, from 

Eq. (26) we can formally write down the operator 

equation for Rl (ρ) 
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where generally dependent on l eigenvalue, El, is 

introduced. 

To solve the operator equation (30), we will use the 

eigenfunctions of the operator 














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, 

which are known to be the Bessel function, Jl (qρ), [22]: 
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21
.  (31) 

Note, for arbitrary operator of the kinetic energy 

 k̂E , the radial function of free particles with an energy 

E can be also expressed via the Bessel function: 

    EER qJll, ,    (32) 

where qE solves the equation E(qE) = E. 

Below we will use Fourier–Hankel transformation 

[23]: 

     




0

qJqRdqR lll .   (33) 

It is important that, for functions in the form of Eqs 

(27) and (28) with integer l, standard two-dimensional 

Fourier transformation between real space and 

momentum space, 

   qqd 


 
2

2

1
,      


 

2

2

1
dq ,  

also leads to the relation (33) for the radial functions 

Rl (ρ) and Rl (q). In particular, this is valid for solutions 

of the well known two-dimensional Coulomb problem 

with attractive potential,  lR  and  qlR  (see, for 

example, Ref. [24]).  

Now we transform Eq. (30) to the integral equation 

         0,

0

 


qRqqQqdqRq llllEE ,  (34) 

with the symmetrical kernel 
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
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0

, qJqJdqqQ lll .   (35) 

For q′ > q, the kernel explicit form is [22]: 
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   (36) 

Here, Γ(x) and   хсbaF ,,,12 are the gamma and 

hypergeometric functions, respectively. For q′ < q, the 

kernel can be obtained from Eq. (36) by permutation 
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q′ ↔ q. This permutation recovers the symmetry property 

of the kernel Ql (q′, q). 

Eq. (34) is the equation for the radial function in 

momentum space. It is important that in Eq. (34) E(q) is 

the usual function, which according to scaling (20) at 

small q behaves as   ...
2

1 2  qqE . 

3.2. Approximate solutions for the wavefunctions 

According to the above semiclassical analysis, in the 

same energy interval, where closed trajectories (in the 

phase-plane) of the electron pair occur, there also exist 

trajectories of the uncoupled motion. Thus, in the 

quantum analysis, we can expect a quasi-resonant 

character of coupled states of the electron pair. We will 

seek for solutions to Eq. (34) in the form 

    lnl

n

l
nl qRBqR B , ,   (37) 

where   qR nl ,  is a set of given functions describing 

localized states. lB  is a small contribution of unbound 

(free) states of the pair, it will be analyzed in the 

following subsection.  

As a set of functions  nlR , , we select the solutions 

of the two-dimensional Coulomb problem with the 

attractive potential. For the momentum representation, 

detailed analysis of this problem has been done in the 

papers [24]. Corresponding functions are solutions for 

the equation 
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qRqqQqdqRq nllnlnE , (38) 

with  22121  nnE  valid at n ≥ |l|, i.e., a given  

nth-state of the two-dimensional Coulomb problem is 

(2n + 1)-fold degenerated. The explicit expressions of 

normalized functions  qnl,R  are 

     
 
 

 
,

!

!
1221

22

22

2322

2

,




























qq

qq

qq

q

ln

ln
niqR

n

nl
n

n

n

nl
nl

P

  (39) 

 

 

where  xl
nP  is associated Legendre polynomials, 

qn = 1/(n + 1/2). One can show that, in momentum space 

these wavefunctions are essentially concentrated within 

the range of small momenta, q ≤ 1/(n + 1/2). The degree 

of localization of the functions in small q-range increases 

for larger l and n. 

Return to solutions of Eq. (34) in the form (37). 

Multiplying Eq. (38) by −1 and comparing it with 

Eq. (34), we can see that for El > 0 both equations are 

quite similar, the only difference is more complex 

dependence of E(q). Accordingly, for the coefficients l
nB  

we obtain the following equations: 

    0
2

1
,

2
,,  




 l

n

ln

nlnl
l
nnll BRqqRBEE ,      (40) 

where n > l and 
nlnl RR 


,, ...  mean the matrix element 

calculated on the Coulomb states {l, n} and {l, n′}. In 

this formulation, the difference of eigenvalues for the 

considered problem from the Coulomb ones is expressed 

via deviation of E(q) from the parabolic law. 

Eqs (40) can be solved numerically for a given E(q) 

dependence. Below we present results obtained for E(q) 

corresponding to Eq. (23) at parameters discussed in 

Section 2 (bigraphene on SiO2 substrate). The procedure 

of solution of Eq. (40) is the following (Galerkin) 

method. We use a finite number of the functions, 

 11,1,, ,...,  vllllll RRR . This gives us ν approximate 

eigenvalues designated as 
 v
Nl,E , N = l, l + 1, l + 2, ... 

l + ν − 1 and corresponding eigenvectors   vl
NB , . Then, 

we increase the integer ν until we reach the discrepancy 
      001.0,

1
,,   v

Nl
v
Nl

v
Nl EEE , for four lower states with N = 

l, …l + 3. The obtained values El,N are presented in Table. 

There, for comparison we also show four eigenvalues, 

|EN,Coul|, of the two-dimensional Coulomb problem of 

Eq. (38). 

Similarly to the Coulomb problem, one can consider 

N as the “main quantum number”. However, unlike the 

Coulomb problem we obtain an inverse series of the 

energy levels: all quasi-bound states are excited states, 

and larger main quantum number N corresponds to 

smaller energy El,N. From  the  results of  Table, one  may  

 

 

 

Table. Calculated energies, El,N, broadenings, γl,N, and total spins, Σ, of different quasi-coupled states for the example of 

bigraphene on SiO2 substrate discussed in the text. Energies of the Coulomb states, |EN,Coul|, are presented for comparison. 

N EN, Coul E1,N γ1,N Σ E2,N γ2,N Σ E3,N γ3,N Σ E4,N γ4,N Σ 

1 0.222 0.337 0.176 1          

2 0.08 0.102 0.028 1 0.094 0.001 0       

3 0.041 0.048 0.007 1 0.046 4·10–4 0 0.044 5·10–6 1    

4 0.025 0.027 0.002 1 0.027 1.5·10–4 0 0.026 3·10–6 1 0.026 < 10–6 0 
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see that for the problem under consideration the (2N + 1)-

fold angular momentum degeneracy, that is characteristic 

for the Coulomb problem, is lifted, though two-fold 

degeneracy of the states with ±l remains (at 0l ). For 

any l, we obtain Coul,, NNl EE  . This is due to the fact 

that the function |E(q)| is always less than the kinetic 

energy for the Coulomb case, q2/2. When l, N increase, 

the found energies El,N become closer to the Coulomb 

analogs. This can be understood since with increase in 

l, N, the wavevectors actual for formation of the quasi-

coupled states become smaller, and the difference 

between functions |E(q)| and q2/2 diminishes.  

For given l, N, the obtained coefficients  l
NB  allow 

us to calculate the radial wavefunctions,  qR Nl, , and the 

total wavefunctions in the momentum space 

   qRe Nl

il

Nl
q

,,
2

1 


 q ,   (41) 

with q and ϕq being the polar coordinates of the vector q. 

Probability to find the electron pair in the {l, N}-bi-

electron state with the radial wavevector from the 

interval q, q + dq is   qdqqR Nl

2

, . The corresponding 

probability density in series (37) is presented in Fig. 4a 

for several long-living bi-electron states (see below the 

estimates for the decay time of these states). One can see 

that indeed the bi-electron wavefunctions are 

concentrated within the region of small q, where the 

effective mass of the single-electron spectrum is 

essentially negative. The larger quantum numbers {l, N}, 

the smaller actual q. We found the average values of q 

for different l, N-states: 65.01,1 q , 3.02,2 q , 

29.03,3 q , 22.04,4 q . 

The inverse Fourier–Hankel transformation gives 

the radial wavefunctions in real space,  NlR , . We used 

these functions to calculate the probability to find two 

electrons within the interval ρ, ρ + dρ, i.e.,    dR Nl

2

, . 

Examples of corresponding probability densities are 

shown in Fig. 4b. It is seen that the probability densities 

are extended over large relative distances, ρ. The average 

distances between the electrons in different {l, N}-states 

are: 7.21,1  , 5.62,2  , 7.1223,3  , 5.224,4  , etc. 

3.3. Decay time calculations 

As stressed above, the found {l, N}-bi-electron states 

have to be quasi-stationary. They decay to free particle 

states of the same energy. A formal approach to decay 

time calculations can be found elsewhere [25]. 

According to this approach, to determine decay of 

the found states we shall correct their energies and 

wavefunctions. For example, in the coordinate represen-

tation we may use corrected wavefunctions in the form 

       EERE ,,0, lNlNl AdRA ,  (42) 

 
 
Fig. 4. (a) Probability densities to find two electrons with the 

relative momentum q. (b) Probability densities to find two 

electrons at the relative distance ρ. Results are shown for long 

living {l, N} bi-electron states. 

 

 
where  ,lR  is the radial functions of free particles 

given by Eq. (32), A0, AE are unknown coefficient and 

function. Then, applying the perturbation method to 

initial Eq. (30) we find these coefficients and an 

imaginary correction to the energy, γl,N: 

 
 

Nlq

NlNlNl

NlNlNl
dqqd

qMq
і

,

2

,,,

,,, ,
E

EE  ,  (43) 

where Nlq ,  is defined by relationship   NlNlq ,, EE  , and 

the matrix element is defined as follows 

         




0

,

0

,, ,qqQqRqqdRqJdqM lNlNlnlNl . 

The calculated values of γl,N are presented in Table. 

The decay factor γl,N defines broadening and the 

lifetime of the two-electron coupled states, 

B,
,

2 ENl

dec
Nl





. 

The results obtained for Nl,  are valid if 

NlNl ,, E , when the energy level Nl,E  is well defined. 
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Note, for l = N = 0 we obtained NlNl ,, E , which can 

be interpreted as the nonexistence of such a state. For 

l ≥ 1, we obtain 1,,  NlNl E . This ratio rapidly decreases 

with increase in l. For l, N ≥ 3, we find that 
4

,, 10 NlNl E . This correlates with conclusions of the 

semiclassical analysis made in Subsection 2.3 for the 

same parameters: semi-classical closed trajectories arise 

at l ≥ 3. In addition, for finite values of the angular 

momenta calculated energies, El, N, belong to the same 

energy intervals, for which the closed trajectories in the 

phase-plane are predicted. 

3.4. Spin states of coupled electrons 

Consider briefly spin states of the coupled electron pair. 

We neglect interaction between spins and orbital motion, 

which allows us to present the total wavefunction of two 

electrons as a product of orbital and spin wavefunctions: 

     2121 ,,,,,  S2121 rrrr , 

where σ1, σ2 are the electron spins and S(σ1, σ2) is a spin 

function. The Pauli exclusion principle states that for two 

identical fermions the total wave function is anti-

symmetric with respect to exchange of the particles. It is 

easy to find symmetry properties of the orbital 

wavefunction of Eq. (28) with respect to permutation 

r1 → r2. Indeed, this permutation corresponds to 

changing r → −r or, in the polar coordinates, {ρ, ϕ}, to 

substitution ϕ → ϕ + π. The latter means that for the 

states with even angular momentum l the orbital 

wavefunction is symmetric, while those are anti-

symmetric for odd l. Thus, to satisfy the Pauli exclusion 

principle for even l, the spin function should be anti-

symmetric, which corresponds to total spin Σ of the 

electron pair equals 0. For odd l, the spin function should 

be symmetric, which implies that the total spin of the pair 

equals 1. 

3.5. Moving bi-electron 

So far, we considered that the center-of-mass of the 

electron pair is motionless, which is valid when the total 

momentum of the pair, P, is zero. If P  0, the electron 

pair is moving as a whole. For the nonparabolic energy 

dispersion, ϵ(p), this translational motion and relative 

motion of the electrons in the pair cannot be separated. 

However, assuming that P is small, we can estimate the 

kinetic energy of the pair and its effective mass. In so 

doing, we use the expansion of the Hamiltonian (1) in 

series with respect to P: 

   

    )44(,,,

є1є

4

1є

4

1
,

0

2

2

2

20

Pprp

PpPrp
2

HH

dp

d

pdp

d

pdp

d

p
HH

















 

where dϵ/dp and d2ϵ/dp2 are functions of magnitude of the 

relative momentum p; δH(p, P) is a correction to the 

Hamiltonian H0 caused by motion of the center-of-mass. 

Using the scaling of Eqs (20), we rewrite this correction as  

   2
2

2

2

1

8

1

8

1
, QkQQk

2

















dk

d

kdk

d

kdk

d

kE

H

B

EEE
H , 

with Q = P/pB. Applying the perturbation theory method 

[26] for the {l, N}-state of bi-electron, we obtain the 

energy correction in the form: 

   











 



2

2
2

,

0,,

2

,
8

11
,

2 dq

d
q

dq

d
qRdq Nl

NlNl
Nl

EE

MM
E

Q
Q  

where  QNl,E  and Nl,M  can be interpreted as the 

dimensionless kinetic energy and the effective mass of 

the bi-electron in the {l, N}-state. Dependence of the 

effective mass of the bi-electron on its “internal” state is, 

obviously, manifestation of interaction of center-of-mass 

motion and internal relative motion. 

Note, the wavefunctions  qR Nl,  are mainly 

localized in the range of small q, where both terms in Eq. 

(45), 
dq

dE
 and 

2

2

dq

d E
, are negative. This implies that the 

effective mass of the bi-electron should be also negative. 

For the discussed example of bigraphene on the 

SiO2 substrate, the dimensionless effective masses of the 

bi-electron in different {l, N}-states are: M1,1 = −16.6, 

M2,2 = −6, M3,3 = −4.8, M4,4 = −4.47. Note, for scaling 

(20), the dimensionless mass of two non-interacting 

electrons with q → 0 equals −4. Thus bi-electrons are 

“heavy” particles with negative masses. 

4. Discussion 

In this paper, we have analyzed interaction of two 

electrons from the same energy band with the complex 

single-particle energy dispersion. Both semiclassical and 

quantum considerations have shown that two electrons 

with the MH single-electron energy dispersion, ϵ(p), can 

form a composite quasi-particle – the bi-electron. The 

coupling energies – energy of relative motion of the two 

electrons – are positive (with respect to 2ϵ(0)). That is, 

the bi-electron corresponds to an excited state of the 

electron system. Bi-electron coupled states exist in the 

continuum of extended (free) states inherent to the 

electron pair. Thus, according to the quantum mechanics, 

the found two-electron coupled states are of quasi-

resonant character and have finite times of life. Their 

times of life increase with the increase of angular 

momentum, thus more stable are the rotating bi-

electrons. The semiclassical analysis also leads to stable 

coupled electron pair only at finite values of the angular 

momentum. Besides, the semiclassical analysis showed 

that relative motion of two electrons has a peculiar 

character: depending on the energy and the angular 

momentum (i.e., on the impact parameter), e-e scattering 

can have three reversal points and reversal points at non-

zero radial momentum, etc. 

The coupling energy, lifetime, angular momentum, 

radius and other characteristics of the bi-electrons are 

defined by the particular ϵ(p)-dependence and dielectric 

properties of the system. Let us discuss these parameters  
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for the above considered example of bigraphene on the 

SiO2 substrate in the transverse electric field. Using the 

scaling given in Eqs (24), for relatively stable bi-electron 

states one can find: E2,2 = 12.4 meV, ps5.02,2 dec , 

nm8.292,2 r ; E3,3 = 5.6 meV, ns13,3 dec , nm2.583,3 r ; 

E4,4 = 3.3 meV, ns54,4 dec , nm1004,4 r , where El,N, 
dec

Nl,  

and Nlr ,  are the bi-electron energy, lifetime and radius in 

the {l, N}-state, respectively. As seen, the quasi-coupled 

states with large angular momenta (l >≈ 3) have 

macroscopically long lifetimes. Note, just these coupled 

bi-electron states are allowed in the semiclassical theory. 

The sizes (radii) of these states are also large 

( nm50r ), they increase  N at N >> 1. 

Note also, for the parameters discussed above the 

distances to the upper valence band and the first excited 

electron band are estimated to be 0.21 eV and 0.31 eV, 

respectively, which are much larger than the found 

coupling energies of the bi-electron, 0.012...0.003 eV. 

That proves applicability of the single band 

approximation used in this paper. 

For the same bigraphene, varying the transverse 

electric field and/or dielectric environment, one can change 

parameters of the bi-electrons. As an example, consider 

briefly the free-standing bigraphene, when one can set 

κ0 = 1. Then, according to the scaling (24) at the voltage 

bias of the same amplitude the coupling energies of the bi-

electrons should be larger than those discussed above by 

factor (1 + κ0,SiO2)2/4 ≈ 6 and the corresponding radii of the 

quantum states should be smaller by factor ≈ 2.5. 
The bi-electron can move as a whole. This 

translational motion can be characterized by the total 
momentum of the composite particle. At small values of 
the total momentum, the kinetic energy of the bi-electron 
is a quadratic function of the momentum. Thus, one can 
introduce an effective mass of the bi-electron. Due to 
strongly nonparabolic character of the energy dispersion, 
the translational motion is coupled to relative motion of 
electrons composing the bi-electron. As the result, the 
effective mass of bi-electron depends on its quantum 
state. Using the scaling given by Eqs (20) and results of 
Subsection 3.5, for the analyzed example of bigraphene, 
we obtain the following values of the effective mass: 
−0.46m0 for l = N = 1; −0.17m0 for l = N = 2; −0.13m0 for 
l = N = 3 and −0.12m0 for l = N = 4, while the effective 
mass of a single electron at k = 0 equals −0.056m0. Thus, 
the effective mass of the bi-electron is negative and 
considerably varies with quantum numbers, l, N. 

Above, properties of the bi-electron were illustrated 

for the example of bigraphene in transverse electric field. 

For this case, the MH single-electron energy spectrum is 

induced by an external voltage. For realistic voltages, 

critical parameters of the MH spectrum (pm, ϵ(pm), M) are 

such that energies of coupled states are relatively small 

(≤ 10 meV) and radii of states are large (≥ 50 nm). For 

two-dimensional crystals with intrinsic MH spectrum (for 

example, III-VI compounds [5, 6]), the characteristic 

parameters are favorable for formation of the bi- particles 

with larger coupling energies and stronger localization. 
 

5. Summary 

We analyzed interaction of a pair of electrons, which 

are characterized by the mexican-hat single-electron 

energy dispersion. We have showed that relative motion 

of the electron pair is of a very peculiar character. For 

example, the real space trajectories corresponding to 

electron-electron scattering can have three reversal 

points and reversal points at non-zero radial 

momentum. These trajectories are strongly different 

from the usual ones. Despite the repulsive Coulomb 

interaction, two electrons can be coupled forming a 

composite particle – the bi-electron. The bi-electron 

corresponds to excited states of two-electron system. 

The bi-electron coupled states exist in continuum of 

extended (free) states inherent to the electron pair. 

Thus, the found bi-electron states are of quasi-resonant 

character and have finite lifetimes. We found that the 

rotating bi-electron is the long-living composite 

particle. When spin-orbital interaction is negligibly 

small, the bi-electron states with even angular momenta 

have zero spin (singlet states), while those with odd 

angular momenta have unitary spin (triplet states). The 

bi-electrons can be in translational motion. For a slowly 

moving bi-electron, we have determined the kinetic 

energy and the effective mass of the composite particle. 

Due to the strongly nonparabolic energy dispersion, 

translational motion of the bi-electron is coupled to its 

internal motion. This results in effective masses 

depending on the quantum states of bi-electron. 

The studied rotating bi-electron replenishes the list 

of composite quasi-particles with the Coulomb inter-

action, which are already known for low-dimensional 

structures, such as excitons, negatively and positively 

charged excitons (trions) [27–29], and more complex 

fractionally-charged quasi-particles (anyons) under the 

fractional Hall effect [30], etc. Because there is a number 

of indications that the mexican-hat single-electron energy 

dispersion occurs for novel two-dimensional materials, 

we have suggested that investigation of rotating bi-

electrons may bring new interesting effects in low-

dimensional and low-temperature physics. 
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Бі-електрон, що обертається, у двовимірних системах з одно-електронною енергією типу мексиканського 

капелюха 

В.А. Кочелап 

Анотація. Ряд нових двовимірних матеріалів і наноструктур демонструє складну залежність одно-електронної 

енергії від імпульсу, яка подібна мексиканському капелюху. У статті проаналізовано взаємодію пари 

електронів з такою енергетичною дисперсією. Показуємо, що відносний рух електронної пари має дуже 

своєрідний характер. Наприклад, траєкторії в реальному просторі, які відповідають електрон-електронному 

розсіюванню, можуть мати три точки розвороту, точки розвороту при ненульовому радіальному імпульсі та 

інші незвичайні особливості. Незважаючи на відштовхувальну кулонівську взаємодію, два електрони можуть 

з’єднуватися, утворюючи складну квазічастинку – бі-електрон. Бі-електрон відповідає збудженим станам дво-

електронної системи. Оскільки бі-електронні зв’язані стани існують у континуумі вільних станів електронної 

пари, ці стани є квазі-резонансними та мають скінченний час життя. Виявлено, що бі-електрон, який 

обертається, є довгоіснуючою складною квазічастинкою. Обертові бі-електрони можуть перебувати в русі. Для 

повільного руху бі-електронів визначено кінетичну енергію та ефективну масу. Через сильно непараболічну 

дисперсію енергії поступальний рух бі-електрона є пов’язаним з його внутрішнім рухом. Це приводить до того, 

що ефективна маса залежать від квантових станів бі-електрона. У статті властивості бі-електрона 

проілюстровано на прикладі біграфену, до якого прикладено поперечне електричне поле.  

Ми вважаємо, що дослідження обертових бі-електронів, що утворюються при одно-електронній дисперсії 

енергії подібної до мексиканського капелюха, можуть виявити нові цікаві ефекти у фізиці двовимірних 

кристалів при низьких температур. 
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