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1. Introduction 

The overdamped stochastic equation is commonly 

defined as [1] 
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Such a model may be relevant to various systems, 

e.g. Josephson junctions [2], optical systems [3, 4], 

levitating nanoparticles [4, 5], ionic channels [6–8], 

chemical reactions of a single molecule [9–11], and 

chemical-physical systems [12]. 

Beginning of theoretical studies on ovedamped 

stochastic processes dates back to the celebrated works 

by Einstein [13, 14] who studied the Brownian motion of 

a free particle, which may formally be considered as an 

overdamped motion in a parabolic potential with velocity 

as the generalized coordinate. A more general study of 

overdamped stochastic processes was started by 

Smoluchowski [15] who formulated the equation of 

motion for the probability density in an arbitrary 

overdamped system. This equation bears his name 

nowadays. The next milestone was the work by Kramers 

[9] who, in particular, formulated the problem of noise-

induced escape of an overdamped system from a 

metastable potential well and derived its quasi-stationary 

solution. The expression for quasi-stationary escape flux 

was found in [9] using the relevant stationary solution of 

the Smoluchowski equation: 
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where ΔU is the potential barrier assumed to be much 
less than the noise intensity D  and Aqs is the prefactor, 
which weakly depends on D  as compared to the 
exponential (activation) factor, respectively. 

The escape flux becomes quasi-stationary when 
time greatly exceeds the characteristic time of the 
formation of quasi-equilibrium within the major part of 
the metastable well, tqe ~ tr ln(ΔU/D), where tr is the 
characteristic relaxation time. But what is the escape flux 
J(t) on time scales t ≤ tqe? Such a question becomes 
relevant e.g. in the case when noise acts on the system 
only during a short time. The relevance of short time 
scales for real experiments and applications grows as 
modern technologies develop. 

There were only a few theoretical works on the 
escape in overdamped systems on time scales t  ≤ tqe. One 
of the most general works was the one by Shneidman 
[16], who solved the non-stationary Smoluchowski 
equation for an arbitrary potential using the Laplace 
integral transformation method under assumption of 
quasi-equilibrium formed in the vicinity of the bottom of 
the well. This assumption is valid only for times 
significantly exceeding the relaxation time tr, while the 
results of [16] are incorrect for shorter times. The present 
work covers the latter range by using the path-integral 
method [17–20], sometimes called also the method of 
optimal fluctuation [21]. We note also that, unlike [9, 
16], our theory may be valid for large D too. 
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In parallel to the development of the escape 

problem on short times, there was an interesting 

discussion in the 90th [22–24] on the transition problem 

on short times. This problem may be of interest in the 

context of prehistory probability density [25], ionic 

channels [6–8] and some biological problems [26, 27]. 

Unlike the case of escape, both the initial and final points 

of transition differ from the stationary points of a noise-

free system. Moreover, if they lie within the same 

monotonous part of the potential, the transition may 

possess features distinctly different from those of the 

escape. Therefore, basing on the optimal fluctuation 

method [17, 21], the authors of [22] suggested that the 

most probable transition path (MPTP) for a short-time 

transition uphill the slope of the potential barrier may 

first relax close to the bottom of the well and only then 

go to the final point. They supported their suggestion by 

analytic calculations for the parabolic approximation of 

the potential well and, seemingly, by numerical 

calculations for the exact potential. However, it was 

shown in [23] (also by numerical calculations using the 

optimal fluctuation method) that the path, which first 

climbs up close to the barrier top and only then relaxes to 

the final point, may provide an exponentially larger 

activation factor. Therefore, just the latter path pretends 

to be the MPTP in such a case. Is it possible to resolve 

this problem rigorously? If yes, may the MPTP possess 

more than one turning point? And may the MPTP switch 

its form jump-like as the transition time varies? Our 

present work answers all these questions too. It should be 

also noted that, apart from being necessary for 

calculation of the activation energy, MPTP may be of 

interest on its own. For example, in the problem of 

optimal control, the MPTP determines the dynamics of 

the external force, which optimally enhances or 

suppresses a given fluctuational transition [28, 29]. 

We also verify the theoretical results by computer 

simulations. Preliminary results of our work were 

presented in the proceedings [26, 30]. 

The structure of the paper is as follows. Sec. 2 

presents basic equations of the path-integral method and 

the general results of the application of this method to the 

problem of interest, including formal expressions for the 

MPTP, activation energy and prefactor. We also describe 

in Sec. 2 the simulation setup. Sec. 3 presents the 

detailed theoretical analysis for a few characteristic 

cases, separately for the escape and transition problems. 

For some of these cases, the theoretical results are 

compared with the results of simulations. Conclusions 

are given in Sec. 4. 

2. Basic concepts and general scheme 

A fundamental quantity for any fluctuational problem is 

the transition probability density P(x0, xf, t) [1]. 

P(x0,xf,t)dx is the probability for the coordinate x, being 

initially equal to x0, to be in the interval [xf ; xf + dx] at 

the instant t. All major physical quantities related to the 

transition may be expressed via P(x0, xf, t) [1] (or, 

equivalently, via the prehistory probability density [25]). 

The quantity of the major interest in the present paper 

(and in most of applications) is the probability flux [1]: 

 
 

 txxP
dx

d
D

dx

xdU
txxJ f

ff

f
f ,,,, 00












 .  (3) 

We shall call it the non-stationary escape or 

transition flux if the initial coordinate coincides or does 

not coincide with the bottom of the potential well, 

respectively. 

2.1. Activation factor 

In the asymptotic limit of small noise intensities, D → 0, 

the leading dependence on D of any physical quantity 

related to the noise-induced transition is activation-like 

[17–21]. This can be easily understood from the 

following reasons. The white noise f(t) (1) may be 

characterized by the probability functional Pwn(f) [17] 

(which determines the probability density in the 

functional space for a given realization [f(τ)] in a given 

time interval [t0,tf]) in the following form: 
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Due to the smallness of D, the exponential function 

in (4) depends very sharply on [f (τ)]. Therefore, it is 

intuitively obvious and can be rigorously shown [17–21] 

that the leading dependence of P(x0, xf, t = tf – t0) on D is 

determined by realizations of [f(τ)] close to the one, 

which provides the maximum value of the exponent in 

(4) when the given transition f

tt
xx

f
 
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0  takes 

place. As a consequence [17–23], 

,    (5) 

 

where Sa is called activation energy and is equal to the 

minimum of the functional called action: 

  


x
a SS min ,        

t

xxLdxSS

0

,  , 

2

4

1










dx

dU
xL  ,      00 xx  ,    fxtx      (6) 

(the same activation energy is obviously relevant to the 

flux J (3)) and B(D, t) is called prefactor, respectively. 

The dependence of the latter on D for small D values is 

much  weaker  than  that  of  the  activation  factor   

exp(–Sa/D). The prefactor will be considered in the next 

subsection. Here, we consider in more detail the 

activation factor and related quantities. 

The necessary condition for the minimum of the 

functional S (6) is zero variation and, as a consequence, 

satisfaction of the Euler equation [22, 31] for the most 

probable transition path [x(τ)]: 

   022  dxUddxdUx .     (7) 

Solutions of Eq. (7) satisfying the boundary 

conditions from Eq. (6) are called extreme paths. They 
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provide extrema of the action S in the functional space. 

Some of extreme paths were numerically found in [22, 

23] for the double-well Duffing potential and various sets 

(x0, xf, t). We provide the analysis of extreme paths and 

corresponding actions S in a more explicit form, which 

allows us to predict and analyze characteristic cases not 

considered in [22, 23]. Besides, we use the theorem 

proved in [32] stating that the number of turning points in 

MPTP, i.e. in the solution of Eq. (7), which provides the 

absolute minimum of action cannot exceed 1 that 

drastically reduces the number of paths eligible for being 

the MPTP. 

Eq. (7) possesses the first integral [31], which, by 

analogy with the mechanics [33], may be called quasi-

energy: 

     4
22 dxdUxLxLxE   .    (8) 

Note that Eq. (7) coincides with the Newton 

equation describing the mechanical motion in an 

auxiliary potential Ũ(x)= – (dU/dx)
2
/2, from which the 

constancy of E (8) is also obvious. Note, however, that E 

in Eq. (8) is twice as small as the mechanical energy 

related to the Newton equation (7). It follows from (8) 

that 

 24 dxdUEx  ,                                                (9) 

where the sign is specified by the sign of the initial 

velocity and the number of turns preceding a given 

instant. 

Given that ẋ
2
 cannot be negative, it follows from (8) 

that E should necessarily satisfy the following condition: 
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One can easily separate variables in (9) and present 

the solution in terms of quadratures for any E in the 

range (10). In Sec. 3, we consider separately the 

transitions following stationary points of the noise-free 

system and those avoiding them. Sa(t) and the evolutions 

of the MPTP significantly differ in these two cases. 

Furthermore, in the two subsections below, we describe 

in general terms the prefactor and the simulation setup. 

2.2. Prefactor 

There are some equivalent schemes for calculation of 

prefactor using the path-integral method [17–21]. We use 

the scheme derived in [18] for some particular case and 

extended for a more general case in [20]. Within this 

scheme, the probability density is expressed by the 

following expression [20]: 
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where the auxiliary quantity Q ≡ Q(x0, xf, t) is the result 

of integration of the certain second-order linear  
 

differential equation with the certain initial conditions, 

namely 
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Here, x ≡ x(x0,xf,τ) is the most probable transition 

path. Eq. (12) assumes that the absolute minimum of 

action is sufficiently deeper than its other possible local 

minima, so that the contributions from the latter may be 

neglected. Otherwise, summation must be done over all 

relevant local minima. 

Substituting Eq. (12) into Eq. (3) and using the 

property [20] 

   2dddd fftfa xxUxxS 


,  (13) 

where x = [x(τ)] is the MPTP, one can obtain the 

expression for the flux J. Therefore, to the lowest order 

in D, the flux is described by the following formula: 
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Eq. (14) has a clear interpretation. The flux at the 

point xf  is equal to the product of the velocity on the 

MPEP at xf and the probability density at xf multiplied by 

the factor 1/2. The latter arises due to the possibility for 

the system to cross xf  in the backward direction. No 

factor 1/2 in the expression for the flux would be present 

if there was an absorbing wall at xf , similar to the case of 

the quasi-stationary flux [16]. 

2.3. Simulation setup 

To obtain the flux from computer simulations, we use the 

following scheme. We put the system in x = x0 and 

integrate the stochastic equation until a given time limit t i 

is reached. The time limit tl should be chosen larger than 

the time of the formation of a quasi-stationary flux, 

which is checked in the end, when J(t) is derived. Then 

the system is reset to the bottom and everything is 

repeated. After sufficient statistics is collected, the flux is 

calculated as 

   
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t

tNtN
NtJ res




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where Nres is the overall number of resets and ΔN+(t) and 

ΔN–(t) are the numbers of crossings of xf during a short 

interval [t, t + Δt] in the positive and negative direction, 

respectively. The interval Δt should be chosen small 

compared with any relevant time scale but large enough 

for ΔN±(t) to greatly exceed 1. 

Simulations for obtaining the probability density are 

similar. The probability density is calculated by the 

following expression: 
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where Δx is a small interval of x and ΔNx(t) is the 

number of resets such that the coordinate of the system 

turns out in the interval [x, x + Δx] at the instant t. 

3. Detailed results 

3.1. Escape problem 

The escape problem is typically defined as that with the 

initial state at the bottom of the well, x0 = xw (this is the 

most natural initial state in which the system stays in the 

absence of noise), while the final coordinate xf is at the 

top of the barrier, xb,  or beyond it, for example at the 

bottom of the neighboring well (cf. Fig. 1a). 

It follows from Eq. (10) that Emin = 0 if the interval 

[x0, xf] contains at least one stationary point (i.e. the point 

where dU/dq = 0). Therefore, the quasi-energy E for the 

solution of the Euler equation for the escape problem is 

necessarily non-negative. This means in its turn that the 

extreme path [x(τ)] cannot have turning points. The 

integration of Eq. (9) results in 
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where the quasi-energy E is determined from the final 

condition 
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x

x
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The function t(E) (18) monotonously decreases 

from ∞ to 0 as E increases from 0 to ∞, provided 

dU/dx is analytic at x = xst. Therefore, for each given t, 

there is only one value of E satisfying the expression 

(18). Hence, there is only one extreme path (17). To 

distinguish this case from the case of transitions, we 

call the path (17) the most probable escape path (or 

MPEP). The action along it constitutes the activation 

energy Sa for the escape. By analogy with classical 

mechanics [33], 

EtSa  .     (19) 

Taking into account that E > 0, we conclude that 

the activation energy Sa is a monotonously decreasing 

function of the transition time t. 

Quantitative evaluation of the activation energy (6) 

can be significantly simplified by using Eq. (9) and the 

transformation of variables dτ = dx/ẋ. Sa is reduced to 

the following quadrature: 

 
 

 
 

Fig. 1. (a) The Duffing potential U(x)  = –x 2 /2+x 4 /4  (thick 

solid line) and schematic pathways of the escape from the left 

well (dotted line) and the inter-well transition (dashed line). 

Dots mark the minima of the potential wells and the top of the 

barrier. (b) Time dynamics of the normalized activation energy 

for the escape (dotted line) and the inter-well transition (dashed 

line) calculated using Eq. (20). The asymptotic large-time value 

is shown by the solid line. 
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where E = E(t) is implicitly given by (18). 
Generally speaking, the integral in (20) should be 

evaluated numerically. However, it is much easier to do 
this than to numerically solve either the minimization 
problem (6) or even Eq. (7) with further numerical 
evaluation of the action integral over time as in [22, 23]. 
Besides, some conclusions may be drawn even without 
explicit integrating in Eq. (20). In particular, changing 
the variables q → U in (20), it is easy to show that for 
the transition from the bottom of the potential well xw, to 
the top of the potential barrier xb 

     wba xUxUUtS   ,   (21) 

which obviously agrees with the conventional formula 

(2) for the quasi-stationary escape [9]. 

Fig. 1a shows the Duffing potential used in [22–24]: 

  42 42 xxxU  .    (22) 
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Fig. 1b shows the dynamics of the activation energy 

for two types of escapes, namely to the top of the barrier 

and to the bottom of another well (the latter type may be 

also called the inter-well transition). The dynamics of Sa 

in these two cases are closely related to each other: 
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Knowing the MPEP and the activation energy, we 

may calculate to the lowest order in D both the 

probability density and the flux using respectively Eqs. 

(11) and (14). The flux calculated by this method for the 

Duffing oscillator (22) is shown in Fig. 2. In the short-

time range, t ≤ tr ≡ 1, it agrees well with the flux derived 

from the simulations, in contrast to the Shneidman theory 

[16], the predictions of which drastically differ from the 

simulation results. 

Assuming that the first-order (in D/Sa) correction in 

the probability density is equal to zero, the first-order 

correction to the flux J
(0)

(t) reduces to 
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This expression nicely describes the simulation results up 

to t ~ 3 ≡ tqe. However, the underlying assumption  is not 

obvious. It is a challenging problem either to rigorously 

prove it or, otherwise, to find the true first-order 

correction to the probability density. 

3.2. Transition problem 

Let the initial and final points are within the same 

monotonous part of a potential curve U(q). From the 

academic point of view, this case is more interesting than 

just the escape from the bottom and namely it was in the 

focus of the discussion in literature a few years ago [22–

24]. Apart from the academic interest, this case may be 

also interesting in the context of the problem of 

prehistory probability density [25] and of some 

biological applications [26, 27]. 

3.2.1. Activation factor 

In terms of our rigorous theory, non-triviality of the 

transition case is a consequence of the fact that the 

minimum energy Emin (10) is negative rather than equal 

to zero. The extrema with negative energies may possess 

turning points. We present below rigorous general 

consideration of the activation factor. We illustrate it by 

the example discussed in [22–24] as well as by some 

other characteristic examples where the situation may be 

more complicated than it was assumed in [22–24]. In 

particular, the criterion for large transition times t derived 

in [23] based on numerical calculations and intuitive 

arguments may turn out invalid for shorter times, so that 

a jump-like switch may occur between the MPTPs of 

different topologies as time t varies. In the end of this 

sub-subsection, we formulate a general algorithm of the 

analytic search for the MPTP and activation energy. 

 
 

Fig. 2. Dynamics of the escape flux from the bottom of the 

Duffing potential (as in Fig. 1) to the top of the barrier 

corresponding to the Langevin equation (1) with D = 0.04. The 
flux was obtained from computer simulations (thin jagged line) 

and calculated: (i) by Eqs. (14) and (24) (thick solid line), (ii) 

by Eq. (14) (dashed line), and (iii) by the Shneidman theory, i.e. 

by Eq. (17) of [16] (dotted line). 

 
 

 
 

Fig. 3. The function (dU(x)/dx)2/4 (thick solid line) for the 

Duffing potential (22) (see Fig. 1a). Dots indicate the points on 

the curve corresponding to x0 = –0.5 and xf = –0.1 (the 
corresponding values of x are indicated by the dotted lines and 

the labels x0 and xf; xw and xb are indicated analogously). The 

level –Emin (10) is indicated by the dashed line and the label. 

 

 

A. The example of the Duffing potential 

Consider first the Duffing potential (22) as a 

characteristic example. Let us choose the initial and final 

points of the transition to be the same to the case 

discussed in [22–24]: 

.1.0,5.00  fxx     (25) 

Fig. 3 shows the function (dU(x)/dx)
2
/4 for the 

Duffing potential (22). The points corresponding to x0 

and xf  (27) are indicated by dots. The most important 

feature of this example of U(x) is the absence of the local 

minima of (dU/dx)
2
 between xw and xb, apart from those 

at xw and xb themselves. This makes the minimum energy 

Emin (10) necessarily realized either at x0 or at xf.  For the 

set (25), Emin is realized at xf.  

00245025.0
4

1
2

min 









fx
dx

dU
E .  (26) 
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Fig. 4. (a) An example of the solution of Eq. (25) for U(q) (22) 

at some arbitrarily chosen values E < 0. The function 

(dU(x)/dx)2/4 in the relevant ranges is shown by the thick solid 

line. The level –E is indicated by the thin solid line and 

corresponding label. The relevant graphic solutions are marked 

by crosses and their positions are indicated by the dotted lines 

and labels x– and x+ for the left and right solution, respectively. 

The positions x0 and xf of the initial and final points of the 

transition are also indicated by the dotted lines and 

corresponding labels. In addition, the point on the curve 

corresponding to xf is marked by the dot. In our case, it 

determines –Emin, which is shown by the dashed line and 

indicated by the corresponding label. (b) Extreme paths [x(τ)] 

corresponding to the given energy E as in (a) shown by the 

solid and dashed lines for the cases of the positive and negative 

initial velocity, respectively. The initial point is marked by the 

circle and additionally indicated by the label i. Possible final 

and turning points are marked by the dots and crosses, 

respectively. Different final points are additionally indicated by 

different labels: ...,
~

,,
~

, BBAA . The correspondence with the 

labels of different branches in Fig. 5 is given by Eq. (29). 

 
 

 

Hence, the extreme paths corresponding to the 

range of energies 0 > E > Emin, possess one or more 

turning points. For a given energy, there are two different 

positions, which the turning points may have, x+ and x– . 

They are determined from the following equation: 

2

min
4

1










dx

dU
E ,    (27) 

so that x  is the closest root to 0fx  among those 

situated on the same side from fx0  as 0fx : 

   0000  fff xxxx    (28) 

(cf. Fig. 4a related to Eqs. (22) and (25)). 

An extreme path with a given E < 0 may turn to x – 

and x+ any number of times. Let us resolve extreme paths 

by their topology, namely by overall number N of turns 

of [x(τ)] (i.e. the number of changes of the sign of 

velocity) and by the sign of the initial velocity multiplied 

by the sign of xf – x0. We shall use the labels like “N =  

3, +”. The sign of [ẋ(xf – x0)] for N = 0 is necessarily “+” 

and will be omitted therefore. For the example shown in 

Fig. 4b, the labels should be put in correspondence with 

the extreme paths in the following way: 

 
 
 
 

 
  .

~
,,2

,
~

,,1

,,,3

,,,2

,,,1

,,0

BiN

AiN

DiN

CiN

BiN

AiN













    (29) 

For each topology set above, the extreme path is 

uniquely defined. Moreover, it can be implicitly 

expressed via quadratures, analogously to the case with 

stationary points involved (cf. Eq. (17)). The full time 

along the extreme path with given topology and quasi-

energy can be explicitly expressed via quadratures. To 

present respective expressions in a compact form, let us 

introduce three auxiliary times: 

 
fxxtEtt 

000 , 

 
  xx f

tEtt , 

 
0xxtEtt  

 , 

 
 


















b

af

b

a

ba Eqzdq
xx

ab

qEq

dq
t ,sign

, 0


, (30) 

where z(q, E) is given by (17). 

Then, for different topologies, the dependence of 

the full time along the extreme path on quasi-energy can 

be easily shown to be the following: 

  00 tEtN  , 

      tttNttEt nN 00,12 12 , 

     tttNtEt nN 00,22 , 

...,2,1,0n      (31) 

Fig. 5a shows all branches in the given ranges of t 

and E, calculated by Eq. (31) for the case corresponding 

to Fig. 3.  

Let us turn now to one of the major purposes of the 

present section, namely to the calculation of action S(t) 

for different branches of t(E). Transforming from time to 

coordinate in the integral (6) using the relation dτ = dx/ẋ 

and the expression (9) for ẋ, one can explicitly express 

the action S corresponding to any branch of t(E) via 

quadratures. In order to present the results in a compact 

form, we introduce the following auxiliary actions: 
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Fig. 5. (a) Calculated by Eq. (31) different branches of t(E) for 

the case shown in Fig. 3. The branches corresponding to 

different topologies of the extreme path are shown by the thick 

solid/dashed lines. The labels indicate the numbers of turning 

points (in the form “N = i”) and the sign of the initial velocity 

ẋ(0) multiplied by the sign of xf – x0. (b) Calculated by Eq. (33) 

different branches of the action S (normalized by ΔU1 ≡ U(xf) – 

– U(x0) = 0.1044) as functions of transition time are marked 

identically to the corresponding branches of t(E) in (a). 

 

 

    

fx

x

EqdqESS

0

,00 , 

    1011

0

2

1

2

1
, US

dq

dU
EqdqESS

fx

x









  , 

   01 xUxUU f  , 

   










 

x

x f

dq

dU
EqdqESS

2

1
, , 

   










 

0

2

1
,

x

x
dq

dU
EqdqESS ,  (32) 

where η(q, E) is given by (20). Then S(t) for different 

branches can be presented as follows: 

  00 StSN  , 

      SSSNSStS nN 10,12 12 , 

       SSSNSStS nN 110,22 11 , 

...,2,1,0n      (33) 

where the argument E ≡ E(t) in S0, S1, S+, S– is to be taken 

for a given branch  tSN ,  as a solution of the equation 

 Ett N  , ,     (34) 

Here, the functions  EtN ,  are defined by (31). For the 

case of the Duffing potential (22) and the set of initial 

and final points (25), Eq. (34) has no more than one root, 

as can be shown using (31), (30) and (17). But generally 

speaking, Eq. (34) may have more than one root (cf. Figs. 

6b, 8b and 9b), so that the function  tSN ,  is multi-

valued then (cf. Figs. 8c, 9c and the inset in Fig. 6c). 

Together with the auxiliary functions z(q, E) and 

ή(q, E) given by Eqs. (17) and (20), respectively, Eqs. 

(30)–(34) describe via quadratures all possible extreme 

paths and actions along them. We stress that this 

description is valid in a general case i.e. for arbitrary 

values of U(x), t, x0 and xf. 

Fig. 5b shows the results for different branches of 

S(t) for the case corresponding to Fig. 3 (i.e. discussed in 

[22–24]). In particular, for t = 8 our results coincide with 

the numerical results for the branches “N = 1, –” and  

“N = 1, +” obtained in [22] and [23], respectively  

(the branch “N = 2, –” was omitted in [22–24]).  

At t < t0(Emin), the activation energy Sa coincides  

with the branch SN=0(t). It takes its lowest value,  

ΔU1 ≡ U(xf) – U(x0), at t = t0(E = 0), which is the time of 

the noise-free relaxation from xf into x0. At t = t0(Emin), 

the branch “N = 0” passes continuously into the branch 

“N = 1, +”, which constitutes Sa at all larger times. At  

t →∞, the corresponding asymptotic values of  tSN ,  

reduce to

 

      U
N

xUxUtS bnN 



2

1
0,12 , 

      U
N

xUxUtS wfnN 



2

1
,12 , 

  U
N

UtS nN 



22

11
1_,22 , 

...,2,1,0n  

   wb xUxUU  ,      01 xUxUU f  . (35) 

It is obvious from (35) that S(t →∞) may have a 

minimum only at the branches “N = 1, +” or “N = 1, – ”. 

Therefore, 

          wfba xUxUxUxUtS  ,min 0 . (36) 
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Fig. 6. Transition in the Duffing potential between the points 

with different positions from those corresponding to Figs. 3–5: 

x 0  =  –0.88 and x f  =  –0.2. (a), (b) and (c) are analogous to 

Figs. 3, 5a and 5b, respectively. The normalization in (c) is: 

ΔU 1  ≡ U (x f )  – U (x f 0 )  ≈  0.217676. The inset in (c) shows the 

enlarged range of t and S  where the jump-like switch between 

the branches N =  1, + and N  = 1, – takes place. In its turn, it 

provides the switch of the topology of the MPTP. 

 

 

In order for Sa(t → ∞) to be constituted by the branch  

“N = 1, +” rather than “N = 1, –”, the following criterion 

is to be satisfied: 

       wfb xUxUxUxU  0 .   (37) 

The criterion (37) was obtained in [23] on an 

intuitive ground and supported by numerical results. We 

note, however, that in a general case, domination of one 

of the branches at t → ∞ may not necessarily guarantee 

the absence of a jump-like switch of the MPTP at some 

finite time. At some ranges of x0 and xf, the jump-like 

switch between the branches “N = 1, +” or “N = 1, –” 

may take place even for the Duffling potential considered 

here, as demonstrated by Fig. 6. In this case, the 

corresponding dependence Sa(t) has a bend. Moreover, 

the flux changes its sign at the critical instant since the 

MPTPs corresponding to instants preceding and fol-

lowing the critical one approach xf from different sides. 

For other potentials, the switches may be much 

more pronounced and involve other branches, as shown 

in the next subsection. 

B. Other characteristic cases 

A picture of different branches of t(E) and S(t) may 

significantly differ from those described in the previous 

subsection if the function (dU(x)/dx)
2
 has a local 

minimum in between its zeros. Consider as an example 

the following potential (Fig. 7): 

  xxxxU 2.038.05 35  .   (38) 

It is obvious from (9) that a path satisfying the 

equation of motion (11) slows down near the coordinate 

xlm of the local minimum, similar to its slowing down 

near the bottom of the well xw or the top of the barrier xb.  

Therefore, apart from the singularity corresponding 

to E = 0, one more singularity may appear in the 

dependence t(E), which corresponds to E = Elm.  

Obviously, it forms only if either 

minEElm  ,     (39) 

or 

minEElm  .     (40) 

is satisfied. 

 
 

Fig. 7. (a) The potential U(x) = –x5/5+0.8x3/3+0.2x and (b) the 

corresponding function (dU(x)/dx)2/4. Positions of the bottom 

of the well and the top of the barrier are indicated by the dotted 

lines and labels xw and xb, respectively. The position and 

magnitude of the local minimum of (dU(x)/dx)2/4 are 

indicated by the labels xlm and –E lm and by the dotted and 

dashed lines, respectively. 
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Eq. (39) holds true if either the condition (41) 

(rather exceptionally) or, much more typically, the 

condition (42) is satisfied: 










lmx
dx

dU
2

, 











































i
lmf xxx

dx

dU

dx

dU

dx

dU
222

,,min

0

. (41) 

Here, 
)(і

lmx  are the coordinates of other possible local 

minima in the interval ]x0,  xf [ ,  which may appear in a 

general case: 










lmx
dx

dU
2

, while [,] 0 flm xxx    (42) 

(see Fig. 8). 

The case (40) is valid if (see Fig. 9) 










lmx
dx

dU
2

, while ],[ 0 flm xxx    (43) 

Let us first analyze the case (42) shown in Fig. 8 

and corresponding to the validity of the expression (39), 

in more detail. 

Any branch of t(E) with N ≥ 1 diverges at E = 0 

and E = E lm. Therefore, it necessarily has a minimum at 

some value   0
,




m
N

E  (cf. Fig. 8b):

 

    m
N

m
NN

E
Ettt

lm
 

,,,
0,

min .   (44) 

On the other hand, any branch of S(t) satisfies the 

following relation: 

E
dt

dSN


,
,     (45) 

where E ≡ E(t) is the solution of Eq. (34). Eq. (45) is 

obtained similarly to Eq. (19) for the case when only one 

branch exists. Hence, any branch  tSN  ,1  consists of 

two parts, both of which start in   m
NN tS

 ,,   

(and monotonously increase as t increases (see Fig. 8c).  

The lower part    tS low
N ,

 corresponds to the 

energies in the range   [0,[
,

m
N

E


 and has the large-time 

asymptote (35). The upper part    tS up
N ,

 corresponds to 

the energy range   ],]
,min

m
N

EE


. As follows from (45), it 

has such large-time asymptote: 

    tECtS lmN
up

N
  ,,

,   (46) 

where ,NC  is a constant having different values for 

different branches. A similar asymptote with the different 

constant corresponds to the branch SN=0(t).  

 

 

 
Fig. 8. Transition from x0 = –0.5 to xf = 0.2 in the potential (38) 

shown in Fig. 7a. As can be seen from (a), Emin coincides with the 

singularity energy Elm corresponding to the local minimum of 

(dU(x)/dx)2/4 shown by the dashed line and indicated by the label 

–Elm. Other notations in (a) are analogous to those in Fig. 3. 

Panels (b) and (c) are analogous to Figs. 5a and 5b, respectively. 

The normalization in (c) is: ΔU1 ≡ U(xf) – U(x0) ≈ 0.16915. 

 

 

Therefore, the large-time asymptote of the 

activation energy Sa is described by the same expression 

(36) as for the case without the local minimum in 

(dU(x)/dx)
2
, which corresponds to either “N = 1, +” or  

“N = 1, –” branch depending on whether the criterion 

(37) is satisfied. 

At small times t, the activation energy Sa is 

constituted by the branch “N = 0”. Unlike the case of a 

potential with (dU/dx)
2
 having no relevant local 

minimum, the change of the topology of  MPTP from  

“N = 0” to “N = 1, +/–” necessarily occurs jump-like 

since the branch tN=0(E) does not touch the branches 

tN=0(E) anywhere (Fig. 8b). As a result, the function  

Sa(t) ≡ Sa = min[N,+/-]{SN,+/–}(t) has a bend (cf. Fig. 8c). 
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The bend in Sa(t) and the jump in the dependence of the 

MPTP on t are typically much more pronounced than in 

the case of a potential without the relevant local 

minimum of the (dU(x)/dx)
2
 (cf. Figs. 8 and 6). 

We have made computer simulations aiming to 

demonstrate: (i) a jump-like change of the MPTP 

topology with time and (ii) a reasonable agreement 

between the theoretically calculated MPTPs (and, more 

generally, extreme paths) and typical simulated 

trajectories. To this end, we have applied a very weak 

noise (with the intensity D = 0.01) to ensure narrow 

probability density distribution both in time and 

coordinate. If the initial and final points of the transition 

are taken as shown in Fig. 8, so that U(xf) > U(x0), the 

statistics is so poor that hardly any transition path at such 

low value of D can be observed. To avoid this difficulty, 

we have simulated the reverse transition. We have shown 

that the extreme paths are just time-reversals of the paths 

for the direct transition. The dependence S(t)/ΔU1 is 

almost equivalent to that for the direct transition (see 

Fig. 8c) except for it is shifted down by 1: 

   
1

2.05.0,5.02.0,

11











U

tS

U

tS
.  (47) 

As a consequence, the probability density of the 

reverse transition exceeds that of the direct one by the 

huge factor exp(ΔU1/D) ≈ exp(16.9) ≈ 2.22×10
7
, so that 

the statistics is quite reasonable for the relevant range of 

time. Fig. 10 presents the results of simulations 

demonstrating the jump-like change of the MPTP 

topology as the transition time increases. Moreover, a 

reasonable agreement between our theory and 

simulations can be seen from Fig. 10. As follows from 

Fig. 8c, the actions for the branches “N = 0” and “N = 1, 

–” are equal each other at t = te ≈ 18.2. This means that 

the MPTP topology at t < te in the asymptotic limit  

D → 0 is “N = 0” (no turning points), while it is  

“N = 1, –” (one turning point to the left from the initial 

point) at t > te. However, the value of the noise intensity 

D in real experiments necessarily differs considerably 

from zero. Generically, the values of the prefactor for 

different branches (topologies) differ from each other. 

This means in particular that the probability densities for 

intersecting branches (action vs. time) are equal at the 

time shifted from te by the value making the corres-

ponding difference in the activation factors compensate 

the difference in the prefactors. This can be seen from 

comparison of Figs. 8c and 10. So, let us describe and 

analyze Fig. 10. For each of the two values of transition 

time t, 14.1 and 15.2, we have depicted six sequentially 

simulated    transition  paths.  We  have  also  drawn   the 

respective theoretically calculated extreme paths 

corresponding to the branches “N = 0” and “N = 1, –”. It 

can be seen from Fig. 10 that 5 of 6 simulated paths with 

t = 14.1 concentrate near the corresponding theoretical 

path without turning points, while 1 path concentrates 

near the theoretically calculated path with one turning 

point and negative initial velocity. In contrast, all 6 

sequentially   simulated   paths   for    the   case    t = 15.2  

 
 

 
 

 
 

Fig. 9. This figure is analogous to Fig. 8 but the set of initial 

and final points of the transition differs: x0 = –0.8, xf = –0.2, so 

that Emin < Elm, as can be seen from (a) and (b). The 

normalization in (c) is: ΔU1 ≡ U(xf) – U(x0) ≈ 0.18893. In (b) 

and (c), the branches relevant to MPTPs with right turning 

points situated to the right from the local minimum of (dU/dx)2 

(i.e. x+ > 0) are shown by the thick dotted lines. Other branches 

are shown by the thick solid and dashed lines. 

 

 

concentrate near the theoretical path with negative initial 

velocity  and   one  turning   point   close   to  x = xw = –1. 

One may conclude from these simulation results that the 

probability density for the noise intensity value D = 0.01 

becomes equal for the two topologies of the path at 
 01.0
,
 D

exett  lying in between 14 and 15. Does the theory 

conform to this result? Calculation of the prefactor shows 

that the prefactor for the lower branch “N = 1, –” exceeds 

that for the branch “N = 0” by the factor of about 37 in the 

relevant time range (from 14 to 15). Therefore, the 

theoretical value of  01.0
,
D

thet  is shifted from te ≈ 18.2 to the 
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Fig. 10. Two series of sequentially measured transition paths 

[x(τ)] of the stochastic system (1) with the potential U(x) (38) 

(see Fig. 7a), the noise intensity D = 0.01, the initial point x(0) 

≡ x0 = 0.2 and the final point x(t) ≡ xf = –0.5 for two values of 

transition time: t = 14.1 (blue dashed lines) and t = 15.2 (red 

dotted lines). x = 0.2 and x = –0.5 are shown by the black dash-

dotted lines. τ = 14.1 and τ = 15.2 are marked by the black solid 

lines. The theoretical extreme paths corresponding to the branch 

“N = 0” and the lower part of the branch “N = 1, –” (cf. Fig. 8c) 

are shown by the thick solid blue and red lines for t = 14.1 and t 

= 15.2, respectively. (Color online) 

 

 

value providing approximately the excess of the activation 

factor for the branch “N = 0” over that for the branch “N = 

1, –” by the factor of 37. Looking at Fig. 8c, we conclude 

that this value is   6.1401.0
, D
thet , that nicely conforms to 

the simulation results. Fig. 10 also demonstrates that the 

simulation paths concentrate near the theoretically 

calculated extreme paths, first of all near the MPTP. 
Finally, we characterize the case (40) (which 

requires (43) to hold true) shown in Fig. 9. It provides a 

richer variety of branches than the case (38) since 

Eq. (34) may have more solutions in this case due to the 

range of energies [Emin, Elm[ coming into play. On the 

other hand, the new types of solutions may constitute Sa 

only in a narrow range of t close to tN=0(Emin) (cf. 

Fig. 9c). Therefore, the branch “N = 0” in the case shown 

in Fig. 9 constitutes Sa at t < τ1 ≈ 4. Then it passes 

continuously into the branch “N = 1, +” with the turning 

point x+ situated on the same side from xlm as xf.  

At t = τ2 ≈ 5, the latter branch switches jump-like to the 

branch “N = 1, –” with the turning point x+ situated far on 

the other side from xlm. Hence, both the bend in Sa(t) and 

the jump in MPTP are as pronounced as in the case (42). 

 

4. Conclusions 

Using the path-integral approach, we have derived a 

complete solution of the problem of noise-induced 

escape of a 1D overdamped potential system from a 

potential well at short time scales for arbitrary potentials. 

The results obtained here differ from the former 

predictions by Shneidman. The simulation results have 

good agreement with our theory for the time range 

preceding the onset of the quasi-stationary stage. We 

have also developed a detailed theory of the transition 

between the points, neither of which is the bottom of the 

well. We have classified possible cases. In particular, if 

the potential in between the initial and final points of the 

transition does not possess extrema, the activation energy 

vs. time necessarily has a minimum at the time equal to 

the time of the purely dynamic transition from the point 

with a higher value of the potential to the another one. 

Besides, as time increases, the MPTP with no turning 

point may change jump-like at certain time te to the 

MPTP with one turning point. At this, the activation 

energy S vs. time t has a distinct bend at t = te.: a rather 

sharp growth of S with t changes jump-like at t = te to 

almost a plateau. The theory conforms well to our 

computer simulations. Our results may be relevant to 

Josephson junctions, levitating nanoparticles in optical 

traps, ionic channels, chemical reactions of a single 

molecule and chemical-physical systems. 
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Короткочасна динаміка  виходів і переходів, стимульованих шумом у наддемпфованих системах 

С.М. Соскін,  В.І. Шека , Т.Л. Ліннік, R. Mannella
 

 

Анотація. Використовуючи метод інтегралів по траєкторіях, ми розробили загальний алгоритм розв’язку 

задачі про динаміку ймовірності викликаного шумом виходу або переходу наддемпфованої одновимірної 

потенціальної системи на часових масштабах порядку часу динамічної релаксації. Результати сильно 

відрізняються від отриманих раніше іншими методами. Комп’ютерне моделювання підтверджує 

справедливість нашої теорії у відповідному часовому діапазоні. Отримані результати можуть становити інтерес 

для досліджень джозефсонівських контактів, левітуючих наночастинок в оптичних пастках, іонних каналів, 

хімічних реакцій та хіміко-фізичних систем. 
 

Ключові слова: одновимірна потенціальна система; короткочасна динаміка; вихід, викликаний шумом; 

наддемпфована система; метод інтегралів по траєкторіях. 


