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Abstract. The cadmium manganese telluride (Cd; \Mn,Te) crystals (x < 0.001 and
x = 0.02, 0.04, 0.1) grown using the Bridgman method were studied by applying
continuous wave and pulsed electron paramagnetic resonance (EPR) spectroscopy in the
wide temperature range. The Cd,Mn,Te crystals with x <0.001 revealed the EPR
spectrum from isolated Mn** with g, =g, =2.0074(3), |A|, =|A|,=56.97-10"cm™,
laj = 30.02:10* cm, while Cd;_,Mn,Te crystals with x = 0.02...0.04 are characterized by
two single broad isotropic EPR lines of Lorentzian shape (g ~ 2.009 and g ~ 1.99) due to
Mn clusters of different sizes. The EPR spectrum of Cd,_Mn,Te crystals with x =0.01
consists of the single broad line at g ~ 2.01 due to higher level of homogeneity inherent to
these crystals. The temperature dependence of spin relaxation times for the isolated Mn**
center in the Cd,_,Mn,Te crystals with x < 0.001 has been described using the conceptions

of Orbach process for Ty * and two-phonon Raman process for T, .
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1. Introduction

Cadmium manganese telluride (Cd,_,Mn,Te) is a modern
semiconductor material used for application in room-
temperature X- and y-ray detectors. Due to these
advantages, namely: tunable wide bandgap, high
resistivity and good carrier transport properties [1],
Cd;_xMn,Te has recently revealed the ability to substitute
the existing Cd(Zn)Te detector crystals [2—4].

Despite numerous studies of Cd;_ \Mn,Te crystals
by using different experimental techniques, the electron
paramagnetic resonance (EPR) spectroscopy data of this
material are still presented less. In particular, there is a
discrepancy in interpretation of EPR data for isolated
Mn?* in Cd;_,Mn,Te crystals. As it was reported in [5],
the EPR spectrum of Mn®* in CdTe:Mn crystals consists
of five sextets of hyperfine lines with the splitting
between these sextets specified by the large cubic crystal

field coefficient (28-10* cm™) that was related to an
unusually large cubic field splitting effect. Recently, the
appearance of additional lines in the Mn** EPR spectrum
with temperature decrease was attributed to the
superhyperfine interaction of 3d°-electrons of Mn®* with
nuclear moments of '*Te and '®Te isotopes [6].
However, no detailed analysis of angular dependence of
EPR spectra and relative intensity ratio of EPR lines
were presented in [6].

In [7], the temperature dependence of the spin-
lattice relaxation time for Mn?* in the Cd,, Mn,Te
crystals with x = 0.005, 0.01 and 0.02 have been studied.
Furthermore, in [5] the authors reported the value of
spin-lattice relaxation time for the Mn?* in CdTe:Mn
crystals containing 0.01% of Mn at 300, 77 and 4.2 K
only. However, no detailed study was presented for the
temperature behavior of the spin relaxation times for
Mn*" in the Cd,_,Mn,Te crystals with x < 0.001.
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In this work, we report the results of detailed
studying the Mn?* in Cdy_,Mn,Te crystals with x < 0.1 by
using the continuous wave (CW) and pulsed EPR
techniques. The spin-Hamiltonian parameters were taken
from the angular dependence of isolated Mn®* EPR
spectra in the Cdy_,Mn,Te crystals with x < 0.001, and it
was proved that the observed EPR spectrum is related to
the crystal-field splitting of Mn?*. The temperature
dependence of phase memory time and spin-lattice
relaxation time for isolated Mn?* in the Cd; ,Mn,Te
crystals with x < 0.001 measured at T<50 K was
described in the framework of Orbach and two-phonon
Raman processes, correspondingly. The EPR spectra of
Cd;_\Mn,Te crystals with x = 0.02, 0.04, 0.1 consist of
the broad single lines related to Mn clusters of different
sizes.

2. Materials and methods

The Cdy_,Mn,Te crystals with x < 0.001 (Ny, = 10%° cm™),
x = 0.02, 0.04, 0.1 were grown using the vertical
Bridgman method. The crystals were cut along the (110)
plane with the size 6x3x1 mm.

The CW and pulsed EPR measurements were
performed using the X-band Bruker ELEXSYS E580
spectrometer. For CW EPR experiments, the ER 4122
SHQE SuperX High-Q cavity equipped with ER 4112HV
variable temperature helium-flow cryostat was used. For
pulsed EPR measurements, we used the EN 4118X-MD5
cavity equipped with the cryostat ER 4118CF.

The experimental parameters for CW EPR were set
as follows: microwave power level was 0.05 mW,
modulation frequency 100 kHz, modulation amplitude
04...1mT (depending on the EPR linewidth),
conversion time 60 ms. The standard DPPH free radical
with g = 2.0036 was used as a reference sample. Electron
spinecho (ESE) decay traces were recorded using the

EPR spectra intensity, a.u.
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Fig. 1. EPR spectrum measured in the Cd, ,Mn,Te crystals
with x < 0.001 at 7= 297 K. BJ|C .
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Fig. 2. Temperature dependence for the EPR spectrum of Mn?*
in the measured Cd,_,Mn,Te crystals with x < 0.001 within the

temperature range from 180 down to 50 K. B € .

primary echo sequence, n/2 — t — n — © — echo, by
increasing the interpulse delay t of the primary echo
sequence with the pulse lengths: /2 = 16 ns, t =800 ns,
n =32 ns with the short repetition time of 4 us. ESE
inversion-recovery experiment was performed using
three-pulse sequence: 1 — T — n/2 — 1 — n© — T —echo with
n=30ns, T=400ns, n/2=16 ns, T = 400 ns, &= = 32 ns
with the short repetition time of 6 ps.

3.  Results and discussion

3.1. EPR spectra in the Cd,,Mn,Te crystals with
x <0.001

Six lines due to the hyperfine coupling with **Mn nuclei
(I = 5/2, 100% abundance) was observed in the
Cd; «Mn,Te crystals with x < 0.001 at T = 297 K (Fig. 1).
This sextet of lines is centered at g=2.0074(2), and
the hyperfine splitting of 6.1 mT corresponds to the Mn**
(S=5/2).

Fig. 2 shows the temperature dependence of EPR
spectra measured in the Cd,,Mn,Te crystals with
x < 0.001 within the temperature range from 180 down to
50 K. At T <180 K, the width of sextet lines starts to
decrease, and additional lines appear in the spectrum. At
T<50 K, the EPR spectrum reveals its “saturation”
effect due to the prolongation of the spin-lattice
relaxation time for Mn®* with decreasing the temperature.

Fig. 3 shows the angular dependence of EPR
spectra measured in the Cd;,Mn,Te crystals with
x <0.001 at T = 50 K, when the crystal rotates around the
¢ axis. The angular dependence shows that the main line
of this sextet is isotropic, while the additional lines reveal
a significant angular dependence.

It is well known that the EPR spectrum of Mn?" in
trigonal symmetry should be described by the following
spin Hamiltonian [8-10]:
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Fig. 3. Angular dependence of EPR spectra (a) and resonance magnetic field values (b) measured in Cd,_,Mn,Te crystals with
x < 0.001 at T =50 K, when the crystal rotates around the ¢ axis. Black dots are experimental data, and solid red lines are the

result of modeling by using Eg. (1).
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where g;, g, — components of g -tensor of spectroscopic
splitting, gn — nuclear g-factor, ug — Bohr magneton, py —
nuclear magneton, B — applied magnetic field, D = 3BY

— second-order spin operator, representing a component
of the crystalline electric field that is axially symmetric
about the c-axis, a=24B; — fourth-order spin operator,
representing the cubic component of crystalline electric
field, F =180B) —36B; — fourth-order spin operator,
representing the component of crystalline electric field
that is axially symmetric about the C -axis, 4, 4, —
components of hyperfine interaction tensor, Q — nuclear
quadrupole moment, | — nuclear spin, S — electron spin.

To determine the spin-Hamiltonian parameters for
the Mn?" center in Cd, ,Mn,Te crystal from the angular
dependence of resonance magnetic field values, simulation
of this angular dependence was performed using the
Easyspin 5.2.28 module [11] and the spin Hamiltonian (1).

The simulated angular dependences for Mn?* in the
Cdy4Mn,Te crystal (Fig.3b) were obtained with the
parameters listed in Table. As it follows from this Table,
the obtained data agree well with the spin-Hamiltonian
parameters for Mn®* in Cd, ,Mn,Te presented in [5].
Therefore, the appearance of additional lines in the EPR
spectrum at T < 180 K in the Cd,_,Mn,Te crystals with
x < 0.001 should be unambiguously attributed to the
crystal-field splitting of Mn?* levels.

At T < 50 K, we have studied the temperature
dependence of spin-relaxation times inherent to Mn?* in
the Cd,_4Mn,Te crystals with x < 0.001 by using pulsed
EPR techniques. Fig.4 shows the temperature
dependence of phase memory and spin-lattice relaxation
rates for Mn?* in the Cd, ,Mn,Te crystals with x < 0.001.

From ESE decay traces measured at the magnetic
field position of the Mn®* center that were fitted to the
stretched exponential function, we obtained the phase
memory time (Ty):

1(t)=10)exp (~t/Tw). (3)
where I(t) is the ESE intensity at time t. From the

analysis of ESE decay traces, we obtained that
Tu=349satT=5K.

Table. The spin-Hamiltonian parameters for Mn?* in the Cd,_,Mn,Te crystals and films obtained in this work at T = 50 K and that

of literature.

9. 9 IA|-107, cm™ A-107, em™ lal-107, em™ Reference

2.0074(3) 2.0074(3) 56.97 56.97 30.02 This work
2.010 2.010 55 55 28 [5]
2.0079 2.0079 56.7 56.7 18 [12]
2.0090 2.0090 59.9(2) 59.9(2) [13]
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Fig. 4. Temperature dependence of Ty, (open circles) and T,

(black squares) rates for Mn®* in the Cdy_Mn,Te crystals with
x <0.001. Blue and red lines represent the result of fitting by
using Egs (4) and (6), respectively.

We found that the temperature dependence of the
Ty * rate for the Mn?" center shown in Fig. 4 agrees well
with the following equation:

Tu'(T) =Tyl +cexp (- A/KT), (4)

where Ty ' is the temperature-independent contribution
from spectral diffusion, and the exponential term
describes contribution from libration motion via the
energy barrier A or/and a contribution from excitations to
the higher energy level by the value A. The fitting of
Eqg. (3) with experimental data gives the following values
of parameters: Ty " = 3-10°s™", A = 8.62 meV = 100 K,
c=2510%s"

The spin-lattice relaxation time (T,) was determined
from a fit of the echo inversion-recovery amplitude
measured at the magnetic field position of the Mn**
center with the biexponential function:

lecto(t) =100 (- YTy )+ Isp &0 (- 1/ Tsp ), (5)

(a) Cd, Mn Te, x=0.04
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where 1, and Isp are amplitudes, and Tsp is the time of
spectral diffusion that affects the inversion recovery
pulse sequence. Therefore, only the slower component T,
was considered. From the analysis of the experimental
data, and we obtained that T; = 1.29-10°sat T = 5 K.

The temperature dependence of the T, rate for the
Mn?* center shown in Fig. 4 is described well by the two-
phonon Raman process:

T, (T)=aT +bT>, (6)

where a and b are the coefficients depending on the
details of relaxation mechanism.

From the fitting of Eq. (5) with experimental data in
Fig. 4, we found that a = 1400 K™.s*and b = 0.035 K>.s %,

3.2. EPR spectra in the Cd;,Mn,Te crystals with
x>0.01

At room temperature, the Cd_,Mn,Te crystals with
x = 0.02, 0.04, 0.1 revealed a broad line centered at
g~ 2.009...2.01 and with the linewidth (ABy,) ranging
from 10 mT (x = 0.02, 0.04) up to 35 mT (x=0.1).
At low temperatures, this line broadens dramatically and
in the Cd,,Mn,Te crystals with x=0.02, 0.04 an
additional less intense line at g ~ 1.99 with a linewidth of
7 mT appears (see Fig. 5). The g-factor and linewidth for
both EPR signals turned out to be isotropic.

The EPR spectra of Cd;,Mn,Te crystals with
x > 0.01 did not reveal any sextet of lines from Mn?*,
since it can be observed only when the linewidth of
individual lines is less than their hyperfine interaction
constant. It is known that the dipolar coupling between
Mn?* ions leads to the EPR line broadening. As a result,
the molecular field acts on the Mn?* ions to vary from
one site to another by shifting the resonance frequency of
the different Mn®" ions [14]. This mechanism leads to the
transformation of the Mn®* sextet to a single
inhomogeneous broadened EPR line in fne Cdy_,Mn,Te,
when x > 0.002.
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Fig. 5. Temperature dependence of EPR spectra observed in the Cd;_,Mn,Te crystals with x = 0.04 (a). The EPR spectra measured
in the Cd; 4Mn,Te crystals with x = 0.02, 0.04,0.1at T =7...11 K (b).
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It can be seen from Fig. 5b that there are two lines
in the EPR spectrum of Cd,_,Mn,Te crystals with x =
0.02...0.04: the broad and narrow ones. The appearance
of those two lines can be explained by a cluster model
suggested in [15] and applied to Cd;_Mn,Te crystals in
[16]. According to [16], fluctuations in the Mn content
lead to the appearance of clusters of two types. The larger
clusters have Mn content close to the x-value, and
smaller clusters have lower Mn content. The broad EPR
line should be attributed to the larger clusters, while the
narrow line belongs to the smaller ones. The absence of
the narrow line in the EPR spectra of Cd; ,Mn,Te
crystals with x = 0.1 may indicate a higher level of
homogeneity inherent to these crystals.

The observed line broadening of the broad intense
EPR line at T < 50 K can be caused by the effect of aniso-
tropic superexchange interaction between Mn®" ions [17].

4. Conclusions

We have studied the Cd;_Mn,Te crystals grown using
the vertical Bridgman method with different Mn
concentrations by using the CW and pulsed EPR
methods. At T < 180 K, the width of the Mn?* sextet lines
in the Cdy,Mn,Te crystals with x<0.001 starts to
decrease, and additional lines in the EPR spectrum
appear. Fitting the spin Hamiltonian for Mn?* in trigonal
symmetry with experimental data allowed us to obtain
the following parameters for Mn?* in the Cd, ,Mn,Te
crystals with x < 0.001: g, = g; = 2.0074(3), |Al. = |A|, =
56.97-10* cm™, |a| = 30.02:10 *cm ™. The temperature
dependence of phase memory rate for Mn®* in the
Cd; «Mn,Te crystals with x < 0.001 was described using
the Orbach process conception with A = 8.62 meV, while
the temperature dependence of the spin-lattice relaxation
rate was fitted with two-phonon Raman process.

The EPR spectra of Cd; ,Mn,Te crystals with x =
0.02, 0.04 consisted of two signals: one intense broad
line at g ~ 2.009 and a less intense and narrow one at
g ~ 1.99. The intense line was attributed to the larger Mn
clusters, and the narrow line is related to the smaller ones
that appeared due to fluctuations in the Mn content.
The absence of a narrow line in the EPR spectra of
Cd; \Mn,Te crystals with x = 0.1 can be explained by a
higher level of homogeneity in these crystals
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Hocaimxenns kpucraiis Cd;_,Mn,Te meTomamu cranionapaoro Ta immyabcaoro EIIP 3 pisauM BMicTom Mn

J.B. CaBuenko, M.K. Psicna, M.B. Uypcanosa, T.B. MarBeeBa, H.O. [lonenko, I.B. IBanuenko,
K.M. KanadyxoBa

Anorauis. JlocmipkeHo KpucTanu Texypuay mapraumo kaamiro (Cd;_Mn,Te) (x < 0,001 ta x = 0,02, 0,04, 0,1),
BUPOILICHUX 3a METONOM bpimkmeHa, 13 3acTOCyBaHHAM CTal[lOHAPHOTO Ta IMIIYJIbCHOTO EJIEKTPOHHOTO
napamartitHoro pesonancy (EITP) y mmpokomy aianasoni Temmeparyp. Kpucramu Cd; yMn,Te 3 x < 0,001 BusBmin
criextp EITP i30mpoBamoro Mn* 3 g, = g, = 2,0074(3), |A, = |A|; = 56,97-10 “ cm %, |a| = 30.02:10* cm *, y Toif uac sk
kpuctamu Cdy yMn,Te 3 x = 0,02...0,04 xapakTepu3yOTbCsI JBOMa MOOAMHOKHUMH LHIMPOKUMH i30TPOMHUMHE JiHISIMU
EIIP nopenuesoi ¢popmu (g ~ 2,009 ta g ~ 1,99) 3a paxyHOK npucyTHOCTI KiactepiB Mn pisHux po3mipis. Cnexrp EITP
kpucrtanis Cdy yMn,Te 3 X = 0,01 ckiamaeTses 3 omHiel mupokoi miii npu g ~ 2,01 yepe3 BUIIHiA piBEHB OXHOPIAHOCTI,
XapaKTepHUH U IHUX KPUCTaiB. TeMmmepaTrypHy 3ajJeKHICTh YaciB CITIHOBOI peiakcamii JJIs i30JbOBaHOTO IEHTpa
Mn?* y xpucramax Cd; ,Mn,Te 3 X < 0,001 omucano 3 BUKopHcTaHHAM mpomecy Op6axa ams Ty © Ta PamaHiBChKOTo
1BOOHOHHOTO mporecy st Ty ™.

Kuarouosi ciioBa: EIIP, gac criiHOBO1 penakcariii, Maprasemnp, TEIypuI KaaMilo MapTaHIlo.
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