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Abstract. | clarify the reasons for the observed discrepancy between the numerical
simulations of noise induced escape in a quartic potential by Soskin et al., and the weak noise
matched asymptotic solution (MAS) of the time dependent Smoluchowski equation obtained
earlier [V. Shneidman, Phys. Rev. E56, 5257 (1997)]. A minor typo — sign of a constant — is
corrected and the MAS is also extended beyond the top of the barrier into the second well.
Once numerics is performed for a higher barrier, the correspondence with analytics is

restored.
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In Ref. [1] Soskin etal. considered escape of an
overdamped particle over a potential barrier. A small-time
path-integral solution was discussed and direct humerical
integration of a Langevin type stochastic differential
equation (SDU) was performed for arbitrary times and
small-to-moderate barriers. Alternatively, in Ref. [2] in
the limit of a high barrier, a matched asymptotic solution
(MAS) of the Smoluchowski equation was obtained, valid
at intermediate and large times.

Based on comparison, the authors of Ref. [1]
conclude that the MAS is “incorrect”. This should be
clarified since the MAS is based on combination of
powerful methods of matched asymptotic expansions and
Laplace transformations. In particular, a similarly
constructed MAS for the problem of transient nucleation
[3], on multiple occasions was later shown to be
numerically accurate, though for larger barriers.

A simple examination of egs. (13a) and (13b) of Ref.
[2] shows that there should be a “—” sign in front of the
term tC in eq. (13a). [In a similarly structured incubation
time in the nucleation problem, eq. (A.9) [3], the sign of
the constant is right]. Otherwise, the general results of
Ref. [2] appear correct. For verification, the quartic

potential [1] U(x)=—x%/2+x*/4 is considered with
stable points at Xg==+1 and the barrier at x,=0; the
particle is initially placed at the left stable point x = —1.

Equation (17) of Ref. [2] gives the time dependence
of the flux

j(xlt)=lKjdyexp{—y—e_a } @)
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Here Ik is the quasi steady state (Kramers) flux, and
for the quartic potential at x=x, one has a=2 and

u= Z(t —ti*). The “incubation time” is now given by
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Note the “—” in front of In 2; the asterisk is added to
indicate the top of the barrier. As shown below later,
eq. (1) with different o and u is also valid beyond the
barrier, sufficiently deep into the second well.

Before comparing the above to numerics, note that
away from equilibrium points the small expansion
parameter of MAS is the inverse of the barrier, and for
barriers of several tens accuracy of the leading approxi-
mation can be sufficient. On the other hand, near the
equilibrium points the expansion parameter is the inverse
root of the barrier see, e.g. Ref. [3] or [4]. Here, for a
reliable comparison either higher order corrections are to
be included in the MAS (as for the Laplace transform [4]
and for the time-dependence of the critical flux [5] in the
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nucleation problem) or, alternatively numerics has to be
performed for a really high barrier. In the framework of
the present Comment, | select the numerical option. Also,
however the MAS will be extended beyond the top of the
barrier, with less demands on the barrier height.

For numerical solution, the Smoluchowski equation
was written in terms of reduced w(x,t)= P(x,t)/Pq(x)

with Py (x)~ exp(-U/D) being the (quasi) equilibrium

probability density. (This is suggested by the MAS -
unlike the non-reduced probability density P(x,t) which
changes with x exponentially fast in the first well, the
reduced w(x,t) changes with x more moderately.) Then,
the flux is determined by j(x,t)=—DPy (x)ow(x,t)/ox .

A reflecting and absorbing boundaries were placed
at x=-2 and x=+1, respectively, and for initial
density a numerical approximation of a d-function by

P(x,O):(\/;/e) exp [— (x+1)2/e2] with e<<+/D was
used, with typical € = 0.001. Numerical solution was then
obtained using the standard ‘NDSolve’ command in
Mathematica 12.

Numerical results are shown by dashed lines in
Fig. 1. For a relatively small barrier of 6.25 corres-
ponding to D = 0.04 (left) this dashed line appears to be
in correspondence with the numerical data of Ref. [1]
(not shown, see Fig. 1 of Ref. [1]) based on a SDU, save
for inevitable scatter of the latter. The strong shift
between numerics and analytics noted in Ref. [1] has
been corrected, although the correspondence of transient
shapes is still not perfect. This is not surprising since for
such a low barrier even the quasi steady state (Kramers)
limit is not achieved too accurately — note that the
numerical curve does not saturate to 1. The difference
between numerics and analytics is significantly reduced
with increase of the barrier (the dashed and solid lines on
the right), but as mention above, for the flux on top of the
barrier to be accurate in the leading order of MAS, the
barrier has to be really high.

To extend the MAS beyond the barrier, | follow the
major steps of Ref. [3]. First, | switch from w(x, t) which
decays with x exponentially fast, to the flux j(x, t) which
changes more smoothly in the region 0 <x<1. The
Laplace transform of this flux to the right of the barrier
(the “right outer solution”) has the structure

J(x, p)~ exp(— pjdx/v), where p is the Laplace index.

Matching this with the inner solution near x = x, [2] gives
the proportionality constant in the outer solution. After
inversion of the Laplace transform using the same
asymptotic technique as described in Ref.[2], one
obtains an expression which is similar in structure to
eq. (1) but with a=4 and u=t-t(x). The new
“incubation time” is given by
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The result is valid almost everywhere in the domain
0 <x<1, except for the boundary layers of the order

VD which are located respectively, near unstable x, =0
and the second stable xg =1 equilibrium points. Due to

relatively large a=4 in the off-barrier domain, for
practical purposes eg. (1) can be approximated by its
limiting form

j(x,t)z IKexp(—e’“) , (@)

which is typical for the nucleation problem [3] and which
in the present case results in an elementary function of
both x and t.

Comparison with numerics at x = 1/2 is shown in
Fig. 2 for a small, intermediate and large barriers,
respectively. Note that accuracy of the MAS (solid lines)
is much better at x = 1/2 than at x =0, the top of the
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Fig. 1. Reduced transient flux at the top of the barrier (x = 0)
for a small barrier 1/4D = 6.25 (left) and for a large barrier
1/4D = 100 (right). Solid lines — egs. (1), (2) with a = 2 and
u= Z(t —ti*), dashed lines — numerics. I is the Kramers flux.
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Fig. 2. The reduced transient flux j(x, t)/lx at x = 1/2 (off the
barrier top) for three values of the barrier height; from left to
right: 1/4D = 6.25, 25 and 100, respectively. Solid lines —
egs. (1), (3) with o = 4 and u = t—tj(x), dashed lines —
numerics, dotted — elementary approximation, Egs. (3), (4).
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barrier (Fig.1). For the smallest barrier (left) the
difference between the leading MAS and numerics
(dashed line in Fig. 2) is inevitable since at large time the
former converges to Kramers flux, while the latter does
not. Accuracy rapidly increases with increasing barrier,
as for 1/4D =25 and 100. For all barriers, the MAS in
this region can be reasonably approximated by the
elementary double exponential eq. (4) — large a limit,
shown by the dotted line.

In summary, the status of the leading part of time-
dependent matched asymptotic solution (MAS) of the
Smoluchowski equation has been restored. While there
remain technical issues of including higher order
corrections into the MAS for lower barriers (especially
near the barrier top), as well as a more carefull
assessment of the standard numerics when the barrier is
very large, currently analytics and numerics appear in
good correspondence, with the difference wanishing with
the increase of the barrier height.
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AHoTanis. S MOsSCHIO NMPUYNHHU CIIOCTEPEXKYBAHOT HEBIAMOBIAHOCTI MIX pe3yJIbTaTaMH YHCEIBHOTO MOJICIIIOBAaHHS
BUXO]ly, BUKJIMKAHOTO IIIyMOM, Y KBAPTHYHOMY IoTeHuiani 3a COCKiHUM Ta iH., Ta aCHMITOTHKOIO 31 CIIA0KUM IIyMOM
(MAS) 3anexuoro Bijx uacy piBasHHS CMOIyX0BChbKOro, orpumanoro paxime [V. Shneidman, Phys. Rev. E56, 5257
(1997)]. He3nauny apykapchbKy MOMHJIKY — 3HaK KOHCTAHTH — BHIIPaBICHO, i MAS TakoX MOMIMPEHO 3a BEPXHIO
yacTuHy Oap’epa B Apyry simy. OCKUIBKM YHMCIOBI 3Ha4YeHHsS JUIS BUILOTO Oap’epa OTpHMaHO, BiANOBIIHICTH 3

AHAIITUKOIO BiJHOBIIEHO.

KoaiouoBi ciioBa: uncenbHe MOJICNIIOBaHHS, KBAPTUYHUI NOTEHIIa)l, ACHMITOTHKA 31 CITA0KHM ILIYMOM.
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