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Abstract. I clarify the reasons for the observed discrepancy between the numerical 

simulations of noise induced escape in a quartic potential by Soskin et al., and the weak noise 

matched asymptotic solution (MAS) of the time dependent Smoluchowski equation obtained 

earlier [V. Shneidman, Phys. Rev. E56, 5257 (1997)]. A minor typo – sign of a constant – is 

corrected and the MAS is also extended beyond the top of the barrier into the second well. 

Once numerics is performed for a higher barrier, the correspondence with analytics is 

restored. 
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In Ref. [1] Soskin et al. considered escape of an 

overdamped particle over a potential barrier. A small-time 

path-integral solution was discussed and direct numerical 

integration of a Langevin type stochastic differential 

equation (SDU) was performed for arbitrary times and 

small-to-moderate barriers. Alternatively, in Ref. [2] in 

the limit of a high barrier, a matched asymptotic solution 

(MAS) of the Smoluchowski equation was obtained, valid 

at intermediate and large times.  

Based on comparison, the authors of Ref. [1] 

conclude that the MAS is “incorrect”. This should be 

clarified since the MAS is based on combination of 

powerful methods of matched asymptotic expansions and 

Laplace transformations. In particular, a similarly 

constructed MAS for the problem of transient nucleation 

[3], on multiple occasions was later shown to be 

numerically accurate, though for larger barriers. 

A simple examination of eqs. (13a) and (13b) of Ref. 

[2] shows that there should be a “–” sign in front of the 

term τC in eq. (13a). [In a similarly structured incubation 

time in the nucleation problem, eq. (A.9) [3], the sign of 

the constant is right]. Otherwise, the general results of 

Ref. [2] appear correct. For verification, the quartic 

potential [1]   42 42 xxxU   is considered with 

stable points at xs = ±1 and the barrier at x
* 
= 0; the 

particle is initially placed at the left stable point x = −1. 

 

Equation (17) of Ref. [2] gives the time dependence 

of the flux 
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Here IK is the quasi steady state (Kramers) flux, and 

for the quartic potential at x = x
*
 one has α = 2 and 

  ittu 2 . The “incubation time” is now given by 
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Note the “–” in front of ln 2; the asterisk is added to 

indicate the top of the barrier. As shown below later, 

eq. (1) with different α and u is also valid beyond the 

barrier, sufficiently deep into the second well. 

Before comparing the above to numerics, note that 

away from equilibrium points the small expansion 

parameter of MAS is the inverse of the barrier, and for 

barriers of several tens accuracy of the leading approxi-

mation can be sufficient. On the other hand, near the 

equilibrium points the expansion parameter is the inverse 

root of the barrier see, e.g. Ref. [3] or [4]. Here, for a 

reliable comparison either higher order corrections are to 

be included in the MAS (as for the Laplace transform [4] 

and for the time-dependence of the critical flux [5] in the  
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nucleation problem) or, alternatively numerics has to be 

performed for a really high barrier. In the framework of 

the present Comment, I select the numerical option. Also, 

however the MAS will be extended beyond the top of the 

barrier, with less demands on the barrier height. 

For numerical solution, the Smoluchowski equation 

was written in terms of reduced      xPtxPtxw eq,,   

with    DUxPeq exp~  being the (quasi) equilibrium 

probability density. (This is suggested by the MAS – 

unlike the non-reduced probability density P(x,
 
t) which 

changes with x exponentially fast in the first well, the 

reduced w(x,
 
t) changes with x more moderately.) Then, 

the flux is determined by       xtxwxDPtxj eq  ,, . 

A reflecting and absorbing boundaries were placed  

at x = −2 and x = +1, respectively, and for initial  

density a numerical approximation of a δ-function by  

      22
є1expє0,  xxP  with Dє  was 

used, with typical ϵ = 0.001. Numerical solution was then 

obtained using the standard ‘NDSolve’ command in 

Mathematica 12. 

Numerical results are shown by dashed lines in 

Fig. 1. For a relatively small barrier of 6.25 corres-

ponding to D = 0.04 (left) this dashed line appears to be 

in correspondence with the numerical data of Ref. [1] 

(not shown, see Fig. 1 of Ref. [1]) based on a SDU, save 

for inevitable scatter of the latter. The strong shift 

between numerics and analytics noted in Ref. [1] has 

been corrected, although the correspondence of transient 

shapes is still not perfect. This is not surprising since for 

such a low barrier even the quasi steady state (Kramers) 

limit is not achieved too accurately – note that the 

numerical curve does not saturate to 1. The difference 

between numerics and analytics is significantly reduced 

with increase of the barrier (the dashed and solid lines on 

the right), but as mention above, for the flux on top of the 

barrier to be accurate in the leading order of MAS, the 

barrier has to be really high. 

To extend the MAS beyond the barrier, I follow the 

major steps of Ref. [3]. First, I switch from w(x, t) which 

decays with x exponentially fast, to the flux j(x, t) which 

changes more smoothly in the region 0 < x < 1. The 

Laplace transform of this flux to the right of the barrier 

(the “right outer solution”) has the structure 

    vdxppxJ exp~, , where p is the Laplace index. 

Matching this with the inner solution near x = x
*
 [2] gives 

the proportionality constant in the outer solution. After 

inversion of the Laplace transform using the same 

asymptotic technique as described in Ref. [2], one 

obtains an expression which is similar in structure to 

eq. (1) but with α = 4 and u = t − t
i
(x). The new 

“incubation time” is given by 
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The result is valid almost everywhere in the domain 

0 < x < 1, except for the boundary layers of the order 

D  which are located respectively, near unstable x
*
 = 0 

and the second stable xs = 1 equilibrium points. Due to 

relatively large α = 4 in the off-barrier domain, for 

practical purposes eq. (1) can be approximated by its 

limiting form 

   u

K eItxj  exp, ,      (4) 

which is typical for the nucleation problem [3] and which 

in the present case results in an elementary function of 

both x and t. 

Comparison with numerics at x = 1/2 is shown in 

Fig. 2 for a small, intermediate and large barriers, 

respectively. Note that accuracy of the MAS (solid lines) 

is much better at x = 1/2 than at x = 0, the top of the  

 
 

 
 
Fig. 1. Reduced transient flux at the top of the barrier (x = 0) 

for a small barrier 1/4D = 6.25 (left) and for a large barrier 

1/4D = 100 (right). Solid lines – eqs. (1), (2) with α = 2 and 

  ittu 2 , dashed lines – numerics. IK is the Kramers flux. 

 

 
 

Fig. 2. The reduced transient flux j(x, t)/IK at x = 1/2 (off the 

barrier top) for three values of the barrier height; from left to 

right: 1/4D = 6.25, 25 and 100, respectively. Solid lines – 

eqs. (1), (3) with α = 4 and u = t – ti(x), dashed lines – 

numerics, dotted – elementary approximation, Eqs. (3), (4). 
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barrier (Fig. 1). For the smallest barrier (left) the 

difference between the leading MAS and numerics 

(dashed line in Fig. 2) is inevitable since at large time the 

former converges to Kramers flux, while the latter does 

not. Accuracy rapidly increases with increasing barrier, 

as for 1/4D = 25 and 100. For all barriers, the MAS in 

this region can be reasonably approximated by the 

elementary double exponential eq. (4) – large α limit, 

shown by the dotted line. 

In summary, the status of the leading part of time-

dependent matched asymptotic solution (MAS) of the 

Smoluchowski equation has been restored. While there 

remain technical issues of including higher order 

corrections into the MAS for lower barriers (especially 

near the barrier top), as well as a more carefull 

assessment of the standard numerics when the barrier is 

very large, currently analytics and numerics appear in 

good correspondence, with the difference wanishing with 

the increase of the barrier height. 
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V.A. Shneidman 

Анотація. Я пояснюю причини спостережуваної невідповідності між результатами чисельного моделювання 

виходу, викликаного шумом, у квартичному потенціалі за Соскіним та ін., та асимптотикою зі слабким шумом 

(MAS) залежного від часу рівняння Смолуховського, отриманого раніше [V. Shneidman, Phys. Rev. E56, 5257 

(1997)]. Незначну друкарську помилку – знак константи – виправлено, і MAS також поширено за верхню 

частину бар’єра в другу яму. Оскільки числові значення для вищого бар’єра отримано, відповідність з 

аналітикою відновлено. 
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