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Abstract. In this work, the authors have considered the effect of short-term nonthermal 

action of microwave radiation on the distribution of radiative recombination centers in 

SiC/por-SiC/Dy2O3 structures. The analysis of photoluminescence spectra of these 

structures excited by the radiation with an energy lower than the band gap in the 4H-SiC 

crystalline substrate has shown that the short-term action of microwave radiation leads to 

the migration of dislocations and, as a consequence, to redistribution of radiative 

recombination centers and local symmetry change. 
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1. Introduction 
 

Miniaturization of optoelectronic devices has 

necessitated the replacement of the traditional silicon 

oxide in metal-insulator-semiconductor (MIS) structures 

and integrated circuits (ICs) with alternative dielectrics 

(dielectrics with high dielectric constant – high-k 

dielectrics) [1–4]. Their use allows the increase of the 

physical thickness of the dielectric in the device and, 

thereby, suppresses the tunnel currents. Oxides of rare-

earth elements (OREE) are promising dielectric materials 

for creating the insulating layers in the film structures of 

micro- and nanoelectronics. These materials have high 

thermal and chemical resistance, large (compared to 

silicon dioxide) dielectric constant values, and high 

electrical strength. The OREE films can be quite simply 

obtained on various semiconductor substrates at relatively 

low temperatures (300…800 °C), which is especially 

important for manufacturing the insulating layers on 

semiconductors that do not have good intrinsic thermal 

oxides. In addition, the OREEs have a high transparency 

within the spectral range 0.3…2.0 μm and have an 

optimal refractive index (n = 1.77…2.18) for their use as 

antireflective and passivating coatings in the photovoltaic 

devices [5]. The MIS varicaps, MIS transistors, and 

memory elements, based on some OREE dielectric films, 

with sufficiently high characteristics, heat-resistant, and 

effective antireflection coatings for photovoltaic devices 

have been developed [6–8]. However, the progress in  

the miniaturization of microelectronic devices causes  

a significant impact on the properties of the oxide-

semiconductor interfaces on the parameters of MIS 

structures with thin dielectric films [1–4]. 

The additional external treatments, namely: 

temperature annealing, γ-irradiation, and microwave 

processing, are often used to modify the concentration of 

defect states at the oxide-semiconductor interface. The 

authors of [8] postulated that the perspective of using 

microwave treatments, to develop new technologies, is 

caused by the following factors. They are the possibility 

of implementing both short-term nano- and microsecond 

pulsed influence and heat treatment in a continuous 

mode; the possibility of selective homogeneous influence 

on the components of semiconductor device structures; 

and non-contact processing of materials in vacuum or 

special environments. Previously, we have observed the 

effect of changes in the absorption coefficient and 

redistribution of the intensity of photoluminescence  

bands for SiC/SiO2 and SiC/TiO2(Gd2O3, Er2O3), SiC/ 

por-SiC/Er2O3 structures after short-term microwave 

irradiation [10–14]. These structures optical properties 

change due to the athermal exposure to microwaves [15]. 

According to the athermal interaction model [15], the 

resonant interaction of microwave radiation with 

dislocations of a certain length leads to the abruption of 

dislocations from stoppers and their movement both in the 

silicon carbide substrate and the oxide layer. In addition, 

when the frequency of microwave radiation is within the 

range of the stopper oscillations, the resonant abruption of 

dislocation from the stopper can be satisfied not only  
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for dislocations of a strictly defined size but also for the 

dislocations of an arbitrary size but attached to a stopper 

oscillating at the resonant frequency. 

Moreover, suppose we consider crystal lattice 

imperfections as dislocation stoppers. In that case, the 

abruption of dislocation from the stopper under the action 

of microwave radiation is also possible due to a decrease 

in the activation energy of mass transfer processes under 

the influence of the averaged ponderomotive force [16]. 

The movement of dislocation, in turn, leads to a change 

in the distribution of internal stresses in the structure and, 

consequently, to subsequent changes in the number and 

configuration of dislocations. Since the binding energy 

between an impurity atom and a dislocation is a function 

of the position of the defect related to the dislocation 

[16, 17], the movement of the dislocation caused by 

microwave irradiation should lead to a redistribution of 

the emission and absorption centers in the structures. 

In this work, we investigated the effect of short-

term athermal microwave irradiation on the distribution 

of radiative recombination centers in 4H-SiC/por-SiC/ 

Dy2O3 structures. 

2. Samples and measurement methods 

A porous surface in silicon carbide (4H polytype) was 

obtained by electrochemical etching in a solution of 

HF:C2H5OH = 1:1 at the current density of 10 mA/cm
2
, 

the etching time was 10 min. Then, the material was 

processed in a KOH melt at 550 °C to open the pores. At 

the next stage, an erbium film was deposited on the 

surface of porous silicon carbide by using the thermal 

sputtering method. Porous SiC structures with a 

deposited layer of dysprosium were annealed in vacuum 

at 800 °C for 8 min and then a thin oxide film of Dy2O3 

was formed on the surface of por-SiC at a fast thermal 

annealing mode in atmosphere of dry oxygen at 400 °C. 

The fast thermal annealing time was 1…5 s. The 

thickness of the resulting oxide layers, determined by 

Auger spectroscopy [18], is ~100 nm. 

Microwave processing was carried out in the 

magnetron operation chamber with the frequency f = 

2.45 GHz and a specific power of ~ 0.04 W/cm
3
.  

The microwave exposure time was 5 s. As was shown  

in [14, 19], the short-term microwave irradiation of  

4H-SiC/por-SiC/Dy2O3 structures with the indicated 

parameters can be considered athermal. 

Photoluminescence (PL) spectra of the samples 

were obtained in backscattering geometry by using a 

T64000 spectrometer (Horiba Jobin Yvon) with a 

confocal microscope and a cooled CCD detector. 

The 532.0 nm line of the Ar-Kr laser was chosen  

to excite the PL attributed directly to radiative 

recombination in the por-SiC or por-SiC/Dy2O3 layer. 

This choice of the excitation wavelength is caused by the 

fact that the energy corresponding to λex = 532.0 nm 

(2.33 eV) is significantly less than the band gap energy 

of the crystalline 4H-SiC (Eg =3.23 eV) [20]. All optical 

measurements were carried out at room temperature. 

 

3. Experimental results and discussion 

Fig. 1 shows the characteristic normalized PL spectra of 

SiC/por-SiC/Dy2O3 structures before and after microwave 

irradiation, excited with hνex = 2.33 eV < Eg (4H-SiC) = 

= 3.23 eV. This choice of the photoluminescence 

excitation wavelength allows the registration of the PL 

spectrum caused by the radiative recombination that 

occurs only in the por-SiC/Dy2O3 layer. In this case, the 

4H-SiC substrate (Eg = 3.23 eV) is transparent for this 

radiation. 

It should be noted that a distinctive feature of  

por-SiC is the presence of photoluminescence even when 

the excitation radiation is less than the band gap energy of 

the initial crystalline material 4H-SiC and 6H-SiC 

substrate (Eg = 3.23 eV and Eg = 3.02 eV, respectively) 

[14, 21–23]. In this case, the PL spectra of por-SiC for the 

4H-SiC, 6H-SiC (α-SiC) and 3C-SiC (β-SiC) polytypes 

have almost the same line shape [21, 22, 24]. 

The authors of [23] show that the appearance of PL 

in por-SiC obtained by anodic etching at the excitation 

with hνex ≤ Eg is associated with the formation of radiative 

centers by impurity atoms and surface defects induced by 

the anodic etching of the crystalline SiC substrate and the 

corresponding processes that open the pores.  

Thus, during the etching of the crystalline silicon 

carbide through the disruption of Si–C bonds in the  

por-SiC layer, the complex compounds, namely oxides, 

siloxenes, and Si–H or C–H bonds as well as C–N bonds 

form (nitrogen is an uncontrolled impurity in SiC) 

[21, 25–28]. Moreover, in the por-SiC an inessential 

presence of 3C-SiC phase as structural defects, namely 

stacking faults, can be. 

As can be seen in Fig. 1, the PL spectrum of 

SiC/por-SiC/Dy2O3 structures is a broad complex peak, 

which consists of several overlapping bands centered at 

590, 650, and 750 nm. These PL bands can also have a 

complex structure. The band at 590 nm is probably 

caused by the microcrystallites of cubic silicon carbide 

3C-SiC in the por-SiC layer [29, 30]. The origin of the 

low-energy peaks at 650 and 750 nm can be explained by 

radiative recombination in donor-acceptor pairs [31] or 

by radiative transitions with the participation of oxygen-

related defects [14]. 

After the microwave treatment of the SiC/por-SiC/ 

Dy2O3 structure, a short-wavelength shift of the integral 

peak position and a change in the shape of the integral 

PL spectrum are observed, which correlates with 

previously obtained data for PL of the SiC/por-SiC/Er2O3 

structures [14]. The noted shift is caused by the 

redistribution of the intensity of individual components 

constituting the integral PL contour. Thus, as can be seen 

in Fig. 1, after microwave treatment the intensity of the 

band at 590 nm increases, and the intensity of the bands 

at 650 and 750 nm decreases. Moreover, the intensity of 

the band at 750 nm is almost two-fold decreased. This 

decrease in the PL intensity can indicate the decrease in 

the number of radiative recombination centers associated 

with oxygen. 
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Fig. 1. Normalized PL spectra for the SiC/por-SiC/Dy2O3 

structure a) before (1) and after (2) microwave irradiation and 

b) their decomposition on elementary components before (3) 
and after (4) microwave irradiation. 

 

 

The integrated PL spectrum of the SiC/por-SiC/ 

Dy2O3 structure, in contrast to the spectra of the SiC/  

por-SiC/Er2O3 structure, is a superposition of the PL 

spectra of por-SiC and Dy2O3 [32, 33]. 

With account that microwave treatment does not 

lead to a significant change in the ratio of the crystalline 

phases 4H-SiC/3C-SiC in the SiC/por-SiC and SiC/  

por-SiC/Er2O3 structures [14], it can be assumed that the 

observed blue shift of the maximum of the integral PL of 

the SiC/por-SiC/Dy2O3 induced by the microwave 

treatment is most likely associated with an increase in the 

intensity of the band at 577 nm attributed to the 

intracenter transitions in ion Dy
3+

 (
4
F9/2 → 

6
H13/2) in the 

Dy2O3 [32, 33] film. A characteristic feature of this PL 

band of Dy
3+

 ion is the strong dependence of its intensity 

on the symmetry of the coordination environment 

[32, 33]. An increase in the intensity of the PL band at 

577 nm dominates in the PL spectrum of Dy2O3 only 

when Dy
3+

 ions are located in low-symmetry sites 

without inversion centers [32, 33]. 

This hyper-dependence on the symmetry of the 

coordination environment allows, among other things, 

using this band intensity as a marker for determining the 

degree of distortion of the coordination environment of 

the Dy
3+

 ion. 

The assumption that the symmetry of the nearest 

environment of the Dy
3+

 ion changes under the influence 

of microwaves correlates with the data of [11]. As it was 

noted in [11], microwave irradiation of the SiC/SiO2 

structures leads to fluctuations in the inhomogeneity of 

distribution of dopant impurities and defects both on the 

surface and in the bulk of the structure, resulting in a 

change in the nature of the inter-impurity interaction 

between PL and absorption centers. Thus, the authors of 

[11] observed the change in the local symmetry for 

nonequivalent nitrogen donors with hexagonal and cubic 

coordination of the nearest environment in the SiC/SiO2 

structures under the influence of microwave treatment, 

which led to the redistribution of intensities of individual 

bands constituting the integral absorption profile of the 

SiC/SiO2 structure [11]. 

4. Conclusions 

Thus, the athermal effect of microwave radiation on the 

SiC/por-SiC/Dy2O3 structures manifests in the redistribu-

tion of radiative recombination centers in these structures. 

This redistribution of PL centers can be caused by the 

abruption of the dislocation from the stoppers under the 

influence of microwave irradiation, which leads to their 

further migration within the field of mechanical stresses 

of the crystal lattice. Consequently, the movement of 

dislocations caused by microwave irradiation leads to the 

redistribution of radiative centers and a change in their 

local symmetry in the SiC/por-SiC/Dy2O3 structures. 
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Перерозподіл центрів випромінювальної рекомбінації в структурі SiC/por-SiC/Dy2O3 під впливом 

атермічної СВЧ дії 

 

О.Б. Охріменко, Ю.Ю. Бачеріков, О.Ф. Коломис, Д.М. Мазяр, В.В. Стрельчук, В.К. Литвин, Р.В. Конакова 

 

Анотація. У даній роботі розглянуто вплив короткочасної нетеплової дії мікрохвильового випромінювання на 

розподіл центрів випромінювальної рекомбінації в структурах SiC/por-SiC/Dy2O3. Аналіз спектрів 

фотолюмінесценції цих структур при збудженні випромінюванням з енергією, меншою за ширину забороненої 

зони кристалічної підкладки 4H-SiC, показав, що короткочасна дія мікрохвильового випромінювання 

приводить до міграції дислокацій і, як наслідок, до перерозподілу центрів випромінювальної рекомбінації та 

зміни їх локальної симетрії. 

 

Ключові слова: нетеплова мікрохвильова дія, рідкісноземельні оксиди, фотолюмінесценція, карбід кремнію. 


