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Abstract. Dielectric properties of native nonwoven textile as well as textile with bound 
biochar and multi-walled carbon nanotubes in the frequency range of 10 to 5·10

5
 Hz and at 

the temperatures of 30 to 60 °C have been investigated. The capacity of native nonwoven 
textile has been shown to decrease with the temperature according to the Arrhenius law. 
The activation energy of the temperature dependence of the capacity has been estimated to 
be 0.09 eV. It has been demonstrated that regardless of the temperature, the frequency 
dependence of the resistance of the nonwoven textile can be described by two exponential 
functions. In the presence of bound biochar and multi-walled carbon nanotubes in the 
nonwoven textile, the conductivity current was 4 orders of magnitude greater than the bias 
current and increased with the temperature according to the Arrhenius law. The activation 
energy of the temperature dependence of the inverse resistance (an analogue of the 
conductivity for homogeneous samples with the same dimensions) has been estimated to be 
0.19 eV for the samples with multi-walled carbon nanotubes and 0.62 eV for the samples 
with bound biochar. 
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1. Introduction 
 

Different physical methods can be employed for detailed 

characterization of various textiles [1–7]. To our opinion, 

one of the main methods of these studies is dielectric 

spectroscopy [8], since the vast majority of textiles are 

dielectrics rather than conductors. 

As follows from the analysis of the data published 

in the last five years, the dielectric properties of textiles 

were theoretically analyzed and studied in detail only in a 

small number of works (see e.g. [9–14]). The most detailed  
 

analysis of possible processes in native and modified 
textiles was performed in the review [9] and dissertation 

[10]. In [10], the results of the experimental studies are 
also provided, but mainly for the gigahertz range of the 
dielectric spectrum. The interest to this range is primarily 

caused by military tasks as it corresponds to the operation 
frequencies of thermal imagers. Studies of textiles in the 
GHz region of the dielectric spectrum were also carried 
out in [11, 12]. Since the present work concerns the 

dielectric measurements below 1 MHz as will be shown 
below, we will not analyze these literature results here. 
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The results of the studies of dielectric properties of 

textiles in the frequency range below 1 MHz are 

presented only in the works [13, 14]. In [13], in addition 

to the dielectric properties, other properties of the textiles 

were investigated. At this, the obtained data on the 

dielectric properties were not properly analyzed. In [14], 

mainly the dielectric properties were investigated, but the 

reasons for their changes induced by introduction of 

various impurities into the textiles were not analyzed. We 

believe that the reason for such a limited analysis of the 

obtained results was that the experimental studies were 

performed only at room temperatures. 

The aim of this work is to study the dielectric 

properties of native and modified with carbon-based 

particles nonwoven textile (color catcher sheets) in the 

frequency range up to 1 MHz at the temperatures of 

30 °C to 60 °C. 

2. Devices and materials 

Color catcher sheets (CCS) by Heitmann Farb- & 

Schmutzfangtücher (Brauns-Heitmann, Germany), 

developed to prevent color runs during washing, were 

used as a model nonwoven textile. The studied materials 

are soft and stable in water solutions for a long time. 

These materials can be efficiently used for 

immobilization of various molecules or nano- and 

microparticles [15]. Biochar produced by Biouhel.cz 

(Czech Republic) was prepared by pyrolysis of soft wood 

at 750 °C for 40 min. Prior to use, the biochar was 

ground using a knife laboratory mixer (Microtron 

Kinematika 550, Kinematica GmbH, Germany). The 

samples were sieved using 100 µm sieves. A fraction of 

the biochar below 100 µm was used for the modification 

of the nonwoven textile. Laboratory prepared multi-

walled carbon nanotubes (MWCNT-COOH-Mn ferrite) 

containing 70 wt.% of Mn ferrite were provided by one 

of the authors of this article (SB). 

Nonwoven textile (color catcher sheets 1×1 cm in 

size) with biochar and MWCNT was modified by 

immersing the textile squares in excess of particles 

suspension in methanol (10 mg/ml) overnight under 

mixing. The modified textile squares were sub- 

sequently dried at room temperature. Scanning electron  
 

 

microscopy images of both native and modified CCS are 

presented in Fig. 1. 

Dielectric properties of the samples were measured 

using the oscilloscope method [16] in the frequency 

range of 10 to 5·10
5
 Hz and at the temperatures of 30 °C 

to 60 °C. For the research, we used sandwich-type 

samples with a protective electrode. The sample area was 

1.0 cm
2
 and their thickness was 0.25 mm. 

A time-varying sinusoidal voltage with the 

amplitude of 4 V was applied to the sample using a  

G3-112 generator. A resistance store, acting as a load 

resistance for a C1-93 oscilloscope, was connected in 

series to the sample. The voltage from the load resistance 

was applied to the Y coordinate of the oscilloscope. The 

X coordinate was supplied with voltage directly from the 

generator. For most frequencies, the oscillograms 

differed during the voltage rise and fall (the oscillograms 

had a shape close to elliptical). In particular, the voltage 

at the load resistance during the rise of the signal from 

the generator Un was greater than the voltage during the 

fall Us. Using the analysis carried out in [16], the values 

of the resistance and capacity were calculated as follows 

based on the obtained oscillograms. 

The expression for calculating the sample resistance is 

sn

x
n

UU

U
RR


 2 ,       (1) 

where Rn is the value of the load resistance, and Ux is the 

voltage, at which the capacity and resistance are 

calculated, respectively. 

The expression for calculating the capacity is 

22

04 x

sn

UUf

UU
C




 ,      (2) 

where f is the frequency of the measuring signal, and  

U0 is the amplitude value of the voltage of the measuring 

signal, respectively. 

In our research, U0 = 4 V and Ux = 2.4 V. 

The sample temperature was maintained using a 

thermostat and a stabilization unit developed by us. A 

deviation from the set value of the temperature did not 

exceed 0.1 °C. 
 

 

 

 

Fig. 1. From left to right: scanning electron microscopy images of native nonwoven textile, textile modified with biochar and textile 

modified with multi-walled carbon nanotubes. The magnification is 1000×. 
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3. Experimental results and their analysis 

3.1. Dielectric properties of color catcher nonwoven 

textile 

The dielectric properties of the substances homogeneous 

in bulk are characterized based on the frequency 

dependences of the components of the dielectric 

permittivity ε' and ε''. The textiles we studied, which 

were prepared in the form of nonwoven textile, were not 

continuous materials. Therefore, their dielectric 

properties cannot be characterized based on the 

frequency dependences of ε' and ε''. Since we studied the 

materials with the same geometric dimensions, we 

analyzed the frequency dependences of the capacity C 

and the resistance R or 1/R instead of the frequency 

dependences of ε' and ε''. 

Fig. 2 shows the dependence of the capacity of the 

nonwoven textile on the frequency for the temperatures 

of 50 °C (curve 1) and 60 °C (curve 2) in double 

logarithmic coordinates. The same dependence was 

observed at the temperatures of 32 °C and 40 °C. 

As can be seen from Fig. 2, the dependence of the 

capacity on the frequency for 32 °C and 60 °C can be 

described by the following relationship: 

mafC  ,       (3) 

where a is the parameter (its value, depending on the 

temperature, practically did not change within the 

experimental error limits), and m is the exponent (its 

value is given in Table 1), respectively. 

As can be seen from Table 1, the value of the 

capacity of the nonwoven textile decreases with the 

frequency according to the power law, and the value of 

the exponent slightly increases with the temperature. 

As is known [8], electric polarization of matter mainly 

includes dipole and electronic components. For a 

measuring signal of 10 to 5·10
5
 Hz, the electronic 

component practically does not change in magnitude. 

Therefore, the decrease in the capacitance with increasing 

the frequency means that the dipole component of  
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Fig. 2. Dependence of the logarithm of capacity on the 

logarithm of frequency for the nonwoven textile at the 
temperatures of 50 °C (1) and 60 °C (2). 

 

Table 1. Parameters of Eqs. (5) and (6) characterizing the 

electrical properties of the nonwoven textile. 

 

t, °C n1 n2 m 

32 0.35 1.14 0.13 

40 0.39 1.16 0.15 

50 0.36 0.91 0.16 

60 0.37 0.86 0.19 

 

 

polarization makes a significant contribution to the 

dielectric permittivity of the nonwoven textile. That is, 

the structural elements of the nonwoven textile are polar. 

This is confirmed by the temperature dependence of the 

capacity shown in Fig. 3. 

It can be seen from Fig. 3 that the dependence of the 

capacity on the temperature for the nonwoven textile can 

be described by a straight line in the Arrhenius 

coordinates, which is equivalent to the following 

relationship: 









 

kT

CW
СС

)(
exp  ,      (4) 

where С∞ is the capacity at the temperature T = ∞,  

W(C) is the activation energy of the temperature 

dependence of the capacity, k is the Boltzmann constant, 

and T is the absolute temperature, respectively. 

The most important parameter in the relation (6) is 

the activation energy, which is equal to 0.09 eV 

according to our estimates.  

The frequency dependences of the resistance of the 

nonwoven textile for the temperatures of 50 °C (1) and 

60 °C (2) in the coordinates lgR = φ(lgf) are shown in 

Fig. 4. 

It may be concluded from the analysis of the 

presented data that they can be described by the 

following relationship: 
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Fig. 3. Temperature dependence of the capacity of the 

nonwoven textile at the frequency of 104 Hz.  

 



SPQEO, 2024. V. 27, No 3. P. 308-314. 

Kovalchuk O.V., Prochazkova J., Kolanowska A. et al. Effect of modification of nonwoven textiles with biochar… 

311 

10
1

10
2

10
3

10
4

10
5

10
4

10
5

10
6

10
7

10
8

2

lg
R

, 
O

h
m

lgf, Hz

1

 
 
Fig. 4. Frequency dependences of the resistance of the 
nonwoven textile in the coordinates lgR = φ(lgf) for the 

temperatures of 50 °C (1) and 60 °C (2). 
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where b1 and b2 are the constants, n1 and n2 are the power 

exponents for the dependence of the resistance on the 

frequency, respectively. 

As in the case of the capacity dependence on the 

frequency, we did not analyze the temperature 

dependences of the parameters b1 and b2, but only the 

temperature dependences of the parameters n1 and n2. 

The values of n1 and n2 for different temperatures are 

listed in Table 1. From the analysis of the obtained data, 

a more unambiguous conclusion may be drawn regarding 

the ratio between n1 and n2 (the value of n1 is almost 

3 times smaller than n2). No clear dependence of the 

parameters n1 and n2 on the temperature can be 

ascertained. 

It was shown above that the capacity of the 

nonwoven textile changes exponentially with the 

temperature. Unlike the capacity, it was not possible to 

ascertain a clear functional dependence of the resistance 

of the nonwoven textile on the temperature. 

 
3.2. Dielectric properties of nonwoven textile modified 

with biochar and MWCNTs 

 

When biochar or MWCNTs was introduced into the 

nonwoven textile, the resistance of the latter decreased by 

more than 4 orders of magnitude, which led to an 

increase in the active component of the current. At the 

sufficiently high values of 1/R, it was not possible to 

determine the reactive component with sufficient 

accuracy for analysis by using the oscilloscope method. 

Therefore, the changes caused by introduction of biochar 

or MWCNTs into the nonwoven textile will be further 

analyzed based on the change in the resistance R or 1/R 

(analogue of the conductivity for homogeneous samples). 

It may be concluded from the analysis of the data 

presented that at low frequencies, the resistance (and  
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Fig. 5. Frequency dependences of the resistance of the 

nonwoven textile with biochar (1) and MWCNTs (2) at the 

temperature of 60 °C. 
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Fig. 6. Temperature dependence of the logarithm of the inverse 
resistance on the inverse absolute temperature for the 

nonwoven textile with biochar (1) and MWCNTs (2). 

 

 

hence the conductivity for homogeneous samples) does 

not depend on the frequency. In this case, the inverse 

value of the resistance for the samples with the same 

geometric parameters may be considered as an analogue 

of conductivity. 

Fig. 6 shows the temperature dependence of 1/R on 

the inverse temperature in the Arrhenius coordinates for 

the nonwoven textile with biochar (curve 1) and 

MWCNTs (curve 2). It is clearly seen from this figure 

that both for biochar and MWCNTs modification, a 

linear dependence of the logarithm of 1/R on 1/T is 

observed. As in the case of the dependence of the 

capacity of the nonwoven textile on the temperature, 

such a dependence of 1/R on 1/T can be described by the 

relation 
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where the coefficient B is equal to the inverse resistance 

at the temperature T = ∞, and W(1/R) is the activation 

energy of the temperature dependence of 1/R, 

respectively. 

It has been found from the analysis of the 

temperature dependences shown in Fig. 6 that the W(1/R) 

is equal to 0.19 eV in the case of the presence of 

MWCNTs in the nonwoven textile, while it is equal to 

0.62 eV in the presence of biochar impurities. 

 

4. Conclusions 

 

1. Since the investigated nonwoven textile samples 

without/with modification with biochar and multilayered 

carbon nanotubes had the same geometric dimensions 

and were heterogeneous in bulk, their dielectric 

properties were proposed to study based on the analysis 

of the frequency dependences of the resistance R (or 1/R) 

and capacity C instead of analyzing the components of 

the complex dielectric permittivity. 

2. It was shown that the capacity of the native 

nonwoven textile decreases with the frequency according 

to the power law regardless of the temperature. This 

dependence may be explained by the significant 

contribution of the dipole component of polarization of 

the nonwoven textile. 

3. It was found that the temperature dependence of 

the capacity of the nonwoven textile can be described by 

a linear dependence in the Arrhenius coordinates. The 

activation energy for such a temperature dependence was 

estimated to be 0.09 eV. 

4. It was shown that in the presence of biochar and 

MWCNTs in the nonwoven textile, the resistance value 

decreases by more than 4 orders of magnitude. At the 

same time, as in the case of the temperature dependence 

of the capacity, the logarithm of the inverse resistance is 

a linear function of the inverse temperature. 

5. The value of the activation energy of the 

temperature dependence of the inverse resistance of the 

samples as a function of the inverse absolute temperature 

was estimated. It was shown that in the case of 

MWCNTs modification, the activation energy of the 

temperature dependence of the logarithm of 1/R on 1/T is 

0.19 eV, while it is equal to 0.62 eV in the presence of 

biochar in the nonwoven textile. 
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Вплив модифікації нетканого текстиля біовугіллям та багатошаровими вуглецевими нанотрубками 

на його діелектричні властивості 

O.В. Ковальчук, J. Prochazkova, A. Kolanowska, S. Boncel, J. Mariano, K. Zolochevska, Т.М. Ковальчук,  

P. Kopčanský, I. Safarik 

Анотація. У діапазоні частот 10…5·10
5
 Гц і температур 30…60 °C досліджено діелектричні властивості 

нетканого текстиля, немодифікованого та модифікованого біовугіллям та багатошаровими вуглецевими 

нанотрубками. Показано, що ємність немодифікованого текстиля зменшується з ростом температури за 

законом Арреніуса. Оцінено енергію активації для температурної залежності ємності. Її величина становить 

0,09 еВ. Показано, що незалежно від температури частотну залежність опору текстиля можна описати за 

допомогою двох експоненціальних залежностей. При наявності у текстилі біовугілля та багатошарових 

вуглецевих нанотрубок струм провідності був на 4 порядки більшим, ніж струм зміщення, і збільшувався з 

ростом температури за законом Арреніуса. Оцінено енергію активації для температурної залежності величини, 

оберненої опору (аналог провідності для зразків з однаковими розмірами). Для зразків з багатошаровими 

вуглецевими нанотрубками вона дорівнює 0,19 еВ, а для зразків з біовугіллям – 0,62 еВ. 

Ключові слова: нетканий текстиль, біовугілля, багатошарові вуглецеві нанотрубки, діелектричні властивості, 

скануюча електронна мікроскопія, енергія активації провідності, напівпровідниковий характер провідності. 


