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Abstract. The evolution equation for guided transverse electrical modes in a slab 
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1. Introduction 
 

Negative index materials (NIMs), also known as left-

handed materials (LHMs) or metamaterials (MTMs) 

were first introduced by Veselago [1], and experi-

mentally verified by Shelby et al. [2]. Pendry et al. 

showed that NIMs can be designed artificially [3], and 

carried out exclusive research on NIMs and negative 

refraction [4–6]. NIMs are different from conventional 

right-handed material, and have negative permittivity and 

permeability [7, 8] simultaneously so they are referred to 

as double-negative medium. They are artificial materials 

that are not available in nature and have numerous 

features. It is known from the literature that various 

properties and applications of LHM, or MTMs, have 

been researched for more than several decades [9–19]. In 

NIMs, negative refraction is theoretically proposed as a 

result of relevant calculations and is also experimentally 

observed [20–23]. 

Waveguides as essential elements of photonics have 

a large background in research regarding electromagnetic 

waves and modes. Various analytical and numerical 

studies of waveguide theory, waveguides, and numerous 

applications are available in the literature [24–27]. In 

cases where metamaterial or LHM are used as a medium 

for waveguides with double positive (DPS), single 

negative (SNG), or double negative (DNG) variations for 

the claddings and substrates as different options, they 

show interesting properties [28–30]. 

The Kerr media have third-order nonlinearity due 

to the quadratic effect of an electric field as a nonlinear 

factor in the evolution equation of the propagation which 

is known as the Kerr effect. It is one of the widely 

investigated media in nonlinear optics and integrated 

optics [31–35]. 

Planar waveguides with Kerr-type nonlinear media 

make possible the existence of modes, which are not 

present in natural material [36–38]. Various slab 

waveguide structures with DNG core and DPS, SNG, and 

DNG claddings or substrates were subject to studies and 

research before, [40–46], and some of the investigations 

done include multilayer waveguides [47–50]. 
In this paper, we present the evolution equation for 

a DNG slab waveguide with Kerr-type nonlinearity, 
mention shortly the general solutions, and present some 
special solutions considering DPS cladding and substrate, 
searching for the transverse electric (TE) modes, and 
compare the results based on analytic and numerical 
results. Finally, we look for the characteristic frequencies 
corresponding to the eigenmodes as solutions of the 
dispersion relation. Characteristic frequencies directly 
obtained from the dispersion equation are not tried before 
to the best of our knowledge, and this is a new 
application. 
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Fig. 1. Slab waveguide with negative-index core and 

conventional claddings. 

 

 

2. Evolution equation for a slab waveguide with 

a Kerr-type core 
 

As known from photonics, in a slab waveguide with 

wave propagation in z direction, and x as the transverse 

direction assuming the refractive index to change only in 

that direction, TE modes will have just a y-component 

depending spatially only in x. 

Fig. 1 shows such a slab waveguide structure with a 

negative-index core with a width of 2a and z axis in the 

center of that core. It is worth not forgetting that the 

waveguide is assumed to be infinite in y and z directions 

and that we restrict ourselves to the linear conventional 

materials for cladding and substrate. 

We use for the core material a medium that shows 

Kerr-type nonlinearity so that the nonlinear term 
2

EED NL  must be considered in expressions and 

added as the nonlinear term of the displacement field 

[35]. In this case, the refractive index of the core being 

nonlinear will be expressed as ,
2

1111

2

1 yEn   

where Ey1 is the y-component of the field in the core, ε1, 

and μ1 are the negative permittivity and permeability, and 

α1 is the nonlinear coefficient [46, 50]. 

In this waveguide with 2a width, i.e. –a ≤ x ≤ a, the 

component of the electric field in the y direction can be 

written as    ,ˆ tjzjzj

y eeexE   yE  where 
tje 

 is 

the time-harmonic excitation [40]. Here, β is the 

propagation constant in the longitudinal direction and ω 

is the angular frequency. Without loss of generality, 

eliminating the complex conjugate since the result will 

not change, the equation will be    tzj

y exE  yE ˆ . 

Considering the Kerr effect, introducing the dimen-

sionless variables 00 , kqxku   and remembering 

that ck 0  is the wave number in vacuum with c 

being the speed of light in vacuum, the evolution 

equation for  xEy  is derived for the TE mode as [50] 
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with i = 1, 2, 3 for core, substrate, and cladding, 

respectively. Eq. (1) is a nonlinear Helmholtz equation in 

one dimension [31, 35]. Here, η1 is a coefficient 

representing the Kerr-effect contribution to the core 

depending on the permeability μ1. For the general case 

with Kerr medium in all three layers, corresponding 

coefficients for cladding and substrate will be η3 and η2, 

respectively. The coefficients ηi are determined 

observing the effects of the nonlinear medium and are 

related to frequency-dependent permittivity and 

permeability. 

The equation for the TM mode can be obtained 

similarly by making the necessary transformation in 

interchanging permittivity ε1 and permeability μ1, 

respectively, with μ1 and ε1, and Ey1 with Hy1 [36]. 

If all three layers are nonlinear and dispersive, the 

transverse wave parameter     2

111 q  as 

well as the parameters     33

2

3 q  and 

    22

2

2 q  are dependent on the wave 

number, with permittivity and permeability being 

dependent on the frequency. 

 

3. General solutions of the evolution equation 

 

The solutions for oscillating guided modes are possible if 
2

3

2

1 nn   and 2

2

2

1 nn  , where n2 > n3. For the slab 

waveguide described in Fig. 1, the cladding and the 

substrate are conventionally linear materials. Hence, the 

coefficients η3 and η2 become both 0, and η1 = α1 

satisfying the equation ,
2

111 yilin E  where ε1lin is 

the linear part of the permittivity. The electric field 

profiles for all three regions can be written as [42, 44] 

   au

y eEuE


 3
033 ,    (2a) 

    uEuEy 1011 cos ,    (2b) 

   au

y eEuE


 2
022 ,    (2c) 

where E03, E01, and E02 are field amplitudes in the 

cladding, core, and substrate, respectively. 

 

3.1. Solutions for guided modes 

 

For oscillating guided modes, κ1 needs to be real so that 
22

111 qn  . Phase shift φ in the core can be expressed 

as  21211 arctan  a . 

At the interfaces, it is obvious that electric fields 

must be identical, and that their first derivatives should 

be continuous. Consequently, at the interface between 

core and cladding, in other words, when u = a, boundary 

conditions Ey3 = Ey1 and    dudEdudE yy 1331   

must be satisfied [51]. 

Similarly, at the interface between core and 

substrate, Ey2 = Ey1, and their first derivatives should be 
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continuous. Applying boundary conditions leads to the 

dispersion equation given as 
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This equation is transcendental and cannot be 

solved analytically. Newton–Raphson or Bisection 

methods can be used to solve this problem for κ1, 

determining the eigenmodes. 

Eqs. (2) determine the complete field profile for all 

three layers. For a numerical result or a graphical demon-

stration, the field amplitudes need to be found for rele-

vant “a” and “–a” values. A normalization using these 

amplitudes is necessary for оbviate of very small numbers. 

The electric field profile for the above  

solution with normalized fields    03333 EEbuE yny  , 

   01111 EEbuE yny  , and    02222 EEbuE yny   is 

given for a = 1 in Fig. 2 where    are normalization 

constants depending on the amplitudes. 

From the boundary conditions, using continuity, 

we see that     110103 sin aEE  and similarly 

   ,sin 110102  aEE  which results in 

   23 signsign bb  . For the field profile of TE1 in the 

symmetric case, we take as an example the parameters 

κ3 = κ2 = 1, and a wave number corresponding to 

ε2 = ε3 = μ2 = μ3 = –μ1 = 1, which is common in the 

literature [35, 36, 42]. The transverse wave parameter is 

taken as κ1 = 1.5, and the boundary value at maximum 

shift, i.e., 2  is used for easiness without losing 

generality as 2 m  is valid at the boundaries for 

other modes as well. In this example, with m as the mode 

number, b2 = –b3 = –b1 = (–1)m is taken just for simplicity 

considering even modes and odd modes to show different 

behaviors. From Eqs. (2) and (3), we see that with the 

cladding being symmetric and double positive for the 

above parameters, only TE1 exists, which is a special 

case determined by the selected parameters for 

permittivity, permeability, and transverse wave number. 

If we take κ1 = 3, other parameters being the same, this 

time TE2 will exist. Other profiles, which can be 

demonstrated for different combinations of permittivity, 

permeability, and transverse wave numbers result in 

more than one TE profile. 

Our investigation is to find the characteristic 

frequencies allowing the oscillating guided modes in the 

waveguide. For this solution, we need to use a model 

regarding the refractive index dependence on the angular 

frequency, and, consequently, on the wave number. 

3.2. Solutions for frequencies using models of 

dispersive cases 

In media with losses, both the permittivity and  

the permeability are complex. In other words, they  

can be written with their real and imaginary parts as 

      Im1Re11 j  and       Im1Re11 j  

[43] and the main parameter responsible for the losses is 

generally the imaginary part of the permeability. 

 

 
 

 
 

 
 

 
 

Fig. 2. Normalized electric field profiles for a = 1; a) for TE1 

with κ1 = 1.5, b) for TE2 with κ1 = 3.0, c) for TE3 with κ1 = 4.5, 

and d) for TE4 with κ1 = 6.3. 
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In cases of Kerr-type nonlinearities, the Drude 

model can be used for which permittivity and 

permeability are expressed respectively in a general way 

for the lossy media as    pp j 2

1 1 , 

   pp jF  2

1 1  in the frequency domain 

[16, 41], where γp is the damping coefficient responsible 

for the losses. Its value differs according to the material 

in question. The so-called filling parameter F, a constant 

indicating the volumetric ratio of the magnetic portion 

gives an idea about the ratio between permittivity and 

permeability and is usually taken as 0.56 in the literature 

[27]. It can be defined as the volume occupied by split 

rings to the unit cell volume for metamaterials. 

For the solution in this paper, the high-frequency 

region is considered so that ω >> γp, and the  

lossless Drude model is assumed, i.e., the damping  

ratio is taken as zero (γp = 0) so that   22

1 1  ep , 

  22

1 1  mp  can be used for permittivity and 

permeability, respectively. The losses are actually 

important in nonlinear media, but especially in 

microwave region the losses can be negligible. 

Nowadays, it is possible to artificially manufacture 

metamaterials, and especially for very low values of the 

imaginary parts of  and , losses can be considered 

negligible so that the lossless Drude model assumption is 

acceptable [52]. Using this approach, the solutions for the 

characteristic wave numbers or corresponding 

frequencies are searched for regarding the assumption 

that electronic plasma frequency is related to the 

magnetic plasma frequency as 222 2 mpepp   

considering the usual parameter F to be approximately 

the same as in the lossless Drude model complying with 

the value given in the literature. As permittivity and 

permeability are both negative for the metamaterials in 

question, it is obvious that ωmp > γp. 

Defining a normalized frequency w = ω/ωmp, we see 

first how the relation between the constants and w are for 

the lossless Drude model case with the plasma frequency 

assumptions above, and find the expression for κ1. Fig. 3 

shows the relation between normalized frequency and the 

parameters permeability and permittivity as well as its 

relation to longitudinal normalized wave number q and 

the transverse wave parameter κ1. In our example, we 

assume the normalized wave number q can be taken 

independently of w for simplicity regarding that it is 

normalized with the vacuum wave number, and that 

special discrete values of q can be found.  

To proceed for the solution, with 

   ,2111 222

1 qww   Eq. (3) is rewritten as 
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Fig. 3. Variables depending on normalized angular frequency 

w: a) permittivity ε1 and permeability μ1, b) 3-D graphics of 

dependences between q, w, and κ1 for the theoretical 

assumption of continuous q values. 

 

 

using the lossless Drude model for the core, and a 

symmetric cladding with κ3 = κ2 = 1 for simplicity. We 

look for solutions noting that it is possible for κ1 > 0, if 

we are searching guided waves. This is valid for a certain 

interval of q values only. Otherwise, i.e., if κ1 is 

imaginary, the outcome will be the propagation of 

surface waves which are evanescent waves traveling 

along boundaries. 

 
4. Numerical results 

 

The graphical and numerical solution of Eq. (4) shows 

that frequencies for making possible the fundamental 

mode exist are not available, neither for different values 

of a nor for any value of the normalized wave number q 

as κ1 > 0. The graphical solutions for a = 1 and a = 2 are 

given for TE1 to TE4 in Fig. 4. 

The findings regarding the solution of Eq. (4) have 

shown the discrete nature of the characteristic 

frequencies for the eigenmodes to exist. While searching 

for solutions for a = 1 and a = 2 with the given discrete  
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normalized wave numbers q = 1.1 to 1.9, we have seen 

that there is no converging result for the fundamental 

mode, and only two results for TE1 in the case of the  

 
 

 

 

sensitivity equal to 10–6 are used in the calculations. A 

list of the characteristic frequencies considering ωmp > ω 

is given in Tables 1 and 2 below. 

 

 
 

 
 

  

 
 

 
 

  

  

Fig. 4. The graphical solutions for TE mode frequencies of the dispersion equation for different wavenumbers and core widths.  

For a = 1: a) TE1, b) TE2, c) TE3, for a = 2: d) TE1, e) TE2, f) TE3. (Color online) 
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Table 1. Normalized characteristic frequencies of the 

eigenmodes for a = 1 with given q and m values. The 

abbreviation NA means “Not Available”. 
 

q m = 1 m = 2 m = 3 m = 4 

1.1 0.730182 0.477866 0.318248 0.231202 

1.2 0.712638 0.475101 0.317393 0.230863 

1.3 NA 0.472070 0.316463 0.230494 

1.4 NA 0.468773 0.315459 0.230097 

1.5 NA 0.465204 0.314381 0.229670 

1.6 NA 0.461360 0.313229 0.229215 

1.7 NA 0.457239 0.312003 0.228730 

1.8 NA 0.452843 0.310704 0.228217 

1.9 NA 0.448170 0.309332 0.227676 

 
Table 2. Normalized characteristic frequencies of the 

eigenmodes for a = 2 with given q and m values. The 

abbreviation NA means “Not Available”. 
 

q m = 1 m = 2 m = 3 m = 4 

1.1 NA 0.662821 0.521938 0.411392 

1.2 NA 0.650989 0.517378 0.409306 

1.3 NA 0.638243 0.512435 0.407045 

1.4 NA 0.624692 0.507117 0.404610 

1.5 NA 0.610478 0.501435 0.402003 

1.6 NA 0.595772 0.495402 0.399229 

1.7 NA 0.580761 0.489036 0.396289 

1.8 NA 0.565627 0.482360 0.393188 

1.9 NA 0.550536 0.475397 0.389930 

 
5. Conclusions 
 

In this paper, a slab waveguide with DPS symmetrical 

cladding and DNG core has been taken as the guiding 

structure considering the Kerr-type nonlinearity effect. 

The guided TE modes in the core are investigated. After 

summarizing the evolution equation for the general Kerr-

type NIM core and conventional cladding using the 

normalized variables, and touching briefly on its 

solutions, the dispersion equation for the symmetric 

cladding is given. Using the lossless Drude model for the 

permittivity and permeability, the solutions for the 

characteristic frequencies of the eigenmodes are searched 

for considering only oscillating modes avoiding solutions 

for surface waves. In the analysis, a new application is 

used and characteristic frequencies are found directly 

from the numerical solution of the dispersion equation. It 

is seen from the graphical solution that characteristic 

frequencies of the modes decrease with the increase in 

the wave and mode numbers. The first result shows that 

the fundamental mode vanishes as characteristic 

frequencies for that mode do not exist. Contrary to the 

wavenumbers, the increase in the core width causes an 

increase in the characteristic frequencies for the same 

mode and wave numbers. 

The research for waveguides and especially 

metamaterials will for sure increase in numbers and the 

novel outcomes in both fields will not be surprising. 

There is, however, a trend of the waveguides 

investigation morely using conventional materials, and a 

trend of the study on metamaterials considering their 

structure, properties, and production methods. If one 

considers the various waveguides types with the 

metamaterial as a DNG medium for different core, 

cladding, and substrate structures, the further properties 

of electromagnetic waveguiding and application 

possibilities will be discovered surely. This is a field 

open both for improvement and development. 

References 

1. Veselago V.G. The electrodynamics of substances 
with simultaneously negative values of ε and μ. 
Soviet Physics-Uspekhi. 1968. 10, No 4. P. 509–514. 
https://doi.org/10.1070/PU1968v010n04ABEH003699. 

2. Shelby R.A., Smith D.R., Schultz S. Experimental 
verification of a negative index of refraction. 
Science. 2001. 292. P. 77–79. 
https://doi.org/10.1126/science.1058847. 

3. Pendry J.B., Holden A.J., Robbies D.J. et al. Mag-
netism from conductors and enhanced nonlinear phe-
nomena. IEEE Trans. Microw. Theory Tech. 1999. 
47. P. 2075–2084. https://doi.org/10.1109/22.798002. 

4. Pendry J.B. Negative refraction. Contemp. Phys. 
2004. 45, No 3. P. 191–202. 
https://doi.org/10.1080/00107510410001667434. 

5. Pendry J.B. Negative refraction makes a perfect 
lens. Phys. Rev. Lett. 2000. 85, No 18. P. 3966–
3969. https://doi.org/10.1103/PhysRevLett.85.3966. 

6. Ward A.J., Pendry J.B. Refraction and geometry in 
Maxwell’s equations. J. Mod. Opt. 1996. 43, No 4. 
P. 773–793. 
https://doi.org/10.1080/09500349608232782. 

7. Wartak M.S., Tsakmakidis K.I., Hess O. Introduction to 
metamaterials. Physics in Canada. 2011. 67. P. 30–34. 

8. Veselago V., Braginsky L., Shklover V. et al. 
Negative refractive index materials. J. Comput. 
Theor. Nanosci. 2006. 3, No 2. P. 1–30. 
http://dx.doi.org/10.1166/jctn.2006.3000. 

9. Singh G., Raj N.I., Marwaha A. A review of meta-
materials and its applications. Int. J. Eng. Trends 
Technol. (IJETT). 2015. 19, No 6. P. 305–310. 
http://dx.doi.org/10.14445/22315381/IJETT-V19P254. 

10. Gangwar K., Paras, Gangwar R.P.S. Metamaterials: 
Characteristics, process and applications. Adv. 
Electron. Electr. Eng. 2014. 4, No 1. P. 97–106. 

11. Rajput M., Sinha R.K. Blue light emission and 
amplification in left-handed isotropic metallo-
semiconductor photonic crystal. Optik. 2011. 122, 
No 16. P. 1412–1417. 
https://doi.org/10.1016/j.ijleo.2010.09.018. 

12. Rajput M., Dabas B., Saini T.S. Mehta N. 
Diminutive left-handed plasmonic nanoantenna-lens 
system in optical realm: ultraviolet emission and 
flat lens application. Opt. Appl. 2019. 49, No 4. 
P. 679–692. https://doi.org/10.37190/oa190412. 



SPQEO, 2024. V. 27, No 3. P. 320-327. 

Yalçınkaya A., Çetin A. Characteristic frequencies of transverse electric modes in a double negative slab waveguide … 

326 

13. Xu Y., Savescu M., Khan K.R. et al. Soliton propa-

gation through nanoscale waveguides in optical meta-

materials. Opt. Laser Technol. 2016. 77. P. 177–

186. https://doi.org/10.1016/j.optlastec.2015.08.021. 

14. Rajput M., Sinha R.K., Varshney S.K. Effect of 

different metallic nano-inclusions (Ag, Al, Au and 

Cu) and gain assistance for isotropic left-handed 

photonic material in blue light region. Opt. Laser 

Technol. 2013. 49. P. 256–263. 

https://doi.org/10.1016/j.optlastec.2012.10.024. 

15. Porfyrakis P., Tsitsa N.L. Nonlinear electromag-

netic metamaterials: Aspects on mathematical 

modeling and physical phenomena. Microelectron. 

Eng. 2019. 216. P. 111028. 

https://doi.org/10.1016/j.mee.2019.111028. 
16. Dalarsson M., Jakšić Z., Tassin P. Structures con-

taining left-handed metamaterials with refractive index 
gradient: Exact analytical versus numerical treat-
ment. Mikrotalasna revija. 2009. 15, No 2. P. 2–5. 

17. Antipov S.P., Liu W., Power J.G. et al. Left-handed 
metamaterials studies and their application to 
accelerator physics. 2005 Particle Accelerator 
Conf., May 16–20, Knoxville, TN, USA. PAC Proc. 
IEEE. 2005. P. 458–460. 
https://doi.org/10.1109/PAC.2005.1590468. 

18. Divya P., Krishna M.S. Meta material antenna for 
wireless systems using HFSS software. Int. J. Res. 
Electron. Comput. Eng. (IJRECE). 2019. 7, No 3. 
P. 833–836. 

19. Elephteriades G.V., Balmain K.G. Negative-
Refraction Metamaterials. Wiley, New Jersey, 2005. 

20. Smith D.R., Padilla W.J., Vier D.C. et al. 
Composite medium with simultaneously negative 
permeability and permittivity. Phys. Rev. Lett. 2000. 
84, No 18. P. 4184–4187. 
https://doi.org/10.1103/PhysRevLett.84.4184. 

21. Okamato K. Fundamentals of Optical Waveguides. 
Academic Press, London, 2006. 

22. Parazzolli C.G., Greegor R.B., Li K. et al. 
Experimental verification and simulation of 
negative index of refraction using Snell’s law. Phys. 
Rev. Lett. 2003. 90, No 10. P. 107401 (1–4). 
https://doi.org/10.1103/PhysRevLett.90.107401. 

23. Houk A.S., Brock J.B., Li K. et al. Experimental 
observations of a left-handed material that obeys 
Snell’s law. Phys. Rev. Lett. 2003. 90, No 13. 
P. 137401 (1–4). 
https://doi.org/10.1103/PhysRevLett.90.137401. 

24. Harmankuyu Ç., Çetin A. Theoretical calculation of 
effective refractive index of an asymmetrical 
dielectric slab waveguide. Journal of Engineering 
and Architecture Faculty of Eskişehir Osmangazi 
University. 2009. 22, No 2. P. 125–137 (in Turkish). 

25. Yaremchuk I.Ya., Fitio V.M., Bobitski Ya.V. 
Enhanced optical transmission of the triple-layer 
resonant waveguide structure. SPQEO. 2016. 19. 
P. 156–161. http://doi.org/10.15407/spqeo19.02.156. 

26. Thander A.K., Bhattacharyya S. Optical confine-
ment study of different semi conductor rib wave-
guides using higher order compact finite difference 

method. Optik. 2016. 127, No 4. P. 2116–2120. 
https://doi.org/10.1016/j.ijleo.2015.11.086. 

27. Taya S.A., Elwasife Kh.Y., Qadoura I.M. Phase and 

group velocities of surface waves in left-handed 

material waveguide structures. Opt. Appl. 2017. 47, 

No 2. P. 307–318. https://doi.org/10.5277/oa170213. 

28. Bhardwaj A., Pratap D., Semple M. et al. Properties 

of waveguides filled with anisotropic metamaterials. 

Comptes Rendus Physique. 2020. 21, No 7–8. 

P. 677–711. https://doi.org/10.5802/crphys.19. 

29. Alú A., Engheta N. Guided modes in a waveguide 

filled with a pair of single-negative (SNG), double-

negative (DNG), and/or double-positive (DPS) 

layers. IEEE Trans. Microw. Theory Techn. 2004. 

52, No 1. P. 199–210. 

https://doi.org/10.1109/TMTT.2003.821274. 
30. Reider G. A., Photonik [Photonics (in German)]. 

3rd ed., Springer, Wien, Austria, 2012. 
31. He X., Wang K., Xu L. Efficient finite difference 

methods for the nonlinear Helmholtz equation in 
Kerr medium. Electron. Res. Arch. 2020. 28, No 4. 
P. 1503–1528. http://dx.doi.org/10.3934/era.2020079. 

32. Weber M. J. (Ed. in Chief), Handbook of Optical 
Materials. CRC, Boca Raton, FL, 2003. 

33. Kasap S.O. Optoelectronics and Photonics: Prin-
ciples and Practices, 2nd ed. Pearson, USA, 2013. 

34. Boyd R.W., Nonlinear Optics, 4th ed. Academic 
Press, London, 2020. 

35. Darmanyan S.A., Kobyakov A., Chowdhury D.Q. 
Nonlinear guided waves in a negative-index slab 
waveguide. Phys. Lett. A. 2007. 363, No 1–2. 
P. 159–163. 
https://doi.org/10.1016/j.physleta.2006.10.087. 

36. Cheng M., Zhou Y., Feng Sh. et al. Lowest oscilla-
ting mode in a nanoscale planar waveguide with 
double-negative material. J. Nanophoton. 2009. 3. 
P. 039504(1–5). https://doi.org/10.1117/1.3286425. 

37. Zhang Y., Grzegorczyk T.M., Kong J.A. Propa-
gation of electromagnetic waves in a slab with 
negative permittivity and negative permeability. 
Prog. Electromagn. Res. (PIER). 2002. 35. P. 271–
286. https://doi.org/10.1163/156939302X01236. 

38. Dong P., Yang H.W. Guided modes in slab wave-
guides with both double-negative and single-negative 
materials. Opt. Appl. 2010. 40, No 4. P. 873–882. 

39. Wu Y.-D., Xu Y.-J., Shih T.-T., Cheng M.-H. 
Analytical and numerical analyses of multilayer 
photonic metamaterial slab optical waveguide 
structures with Kerr-type nonlinear cladding and 
substrate. Crystals. 2022. 12. P. 628. 
https://doi.org/10.3390/cryst12050628. 

40. Liu S.H., Liang C.H., Ding W. et al. Electromag-
netic wave propagation through a slab waveguide of 
uniaxially anisotropic dispersive metamaterial. 
Prog. Electromagn. Res. (PIER). 2007. 76. P. 467–
475. http://dx.doi.org/10.2528/PIER07071905. 

41. Shadrivov I.V., Sukhorukov A.A., Kivshar Y.S. 
Guided modes in negative-refractive-index wave-
guides. Phys. Rev. E. 2003. 67. P. 057602(1–4). 
https://doi.org/10.1103/PhysRevE.67.057602. 

https://doi.org/10.1103/physrevlett.84.4184
https://doi.org/10.1016/j.ijleo.2015.11.086
https://doi.org/10.1016/j.physleta.2006.10.087
https://doi.org/10.1117/1.3286425


SPQEO, 2024. V. 27, No 3. P. 320-327. 

Yalçınkaya A., Çetin A. Characteristic frequencies of transverse electric modes in a double negative slab waveguide … 

327 

42. He Y., Cao Z., Shen Q. Guided optical modes in 
asymmetric left-handed waveguides. Opt. Commun. 
2005. 245. P. 125–135. 
https://doi.org/10.1016/j.optcom.2004.09.067. 

43. Taya S.A., Kullab H.M., Qadoura I.M. Dispersion 
properties of slab waveguides with double negative 
material guiding layer and nonlinear substrate. J. 
Opt. Soc. Amer. B. 2013. 30, No 7. P. 2008–2013. 
https://doi.org/10.1364/JOSAB.30.002008. 

44. Wang Z.J., Dong J.F. Analysis of guided modes in 
asymmetric left-handed slab waveguides. Prog. 
Electromagn. Res. (PIER). 2006. 62. P. 203–215. 
https://doi.org/10.2528/PIER06021802. 

45. Lee C-H., Lee J. Modal characteristics of five-
layered slab waveguides double-clad metamaterials. 
Computers, Materials & Continua. 2012. 31, No 2. P. 
147–156. https://doi.org/10.3970/cmc.2012.031.147. 

46. Wu Y.-D. A general method for analyzing arbitrary 
planar negative-refractive-index multilayer slab 
optical waveguide structures. Sci. Rep. 2020. 10. P. 
14964. https://doi.org/10.1038/s41598-020-72017-3. 

47. Fitio V.M., Bendzyak A.V., Yaremchuk I.Y. et al. 
Wave equation solution for multilayer planar wave-
guides in a spatial frequency domain. SPQEO. 2017. 
20. P. 424. https://doi.org/10.15407/spqeo20.04.424. 

48. Kuo C.W., Chen S.Y., Wu Y.-D. et al. Analyzing 
the multilayer optical planar waveguides with 
double-negative metamaterial. Prog. Electromagn. 
Res. (PIER). 2010. 110. P. 163–178. 
http://dx.doi.org/10.2528/PIER10101405. 

49. Wu Y.-D., Cheng M.-H. Photonic metamaterial planar 
optical waveguide structures with all Kerr-type non-
linear guiding films. Opt. Quant. Electron. 2021. 53. 
P. 690. https://doi.org/10.1007/s11082-021-03314-y. 

50. Hussein A.J., Taya S.A., Vigneswaran D. et al. 
Universal dispersion curves of a planar waveguide 
with an exponential graded-index guiding layer and 
a nonlinear cladding. Results Phys. 2021. 20. P. 
103734. https://doi.org/10.1016/j.rinp.2020.103734. 

51. Hegde R.S., Winful H.G. Optical bistability in 
periodic nonlinear structures containing left handed 
materials. Microw. Opt. Techn. Lett. 2005. 46, No 6. 
P. 528–530. https://doi.org/10.1002/mop.21037. 

52. Marcos P., Soukolisis C.M. Wave Propagation. 
Princeton University Press, 2008. 

 

 

Authors and CV 

 

Ahmet Yalçınkaya, PhD Candidate 

in Physics at Eskişehir Osmangazi 

University, got his BS in Mechanical 

Engineering from Boğaziçi Univer-

sity in 1987, and MS in Robotics 

Engineering from Istanbul Techni-

cal University in 1991. Mainly 

worked as engineer, manager, or 

consultant  in the industry for  more  

than 30 years. Served as part-time project assistant, part-

time lecturer, and volunteer technology consultant at 

some universities in Türkiye and abroad. Author of 

many publications in management, economics, and 

robotics. His research areas in Physics are nonlinear 

optics and metamaterials. 

http://orcid.org/0000-0003-1537-3638 
 

 

Ali Çetin, PhD, Assistant Professor 

at Eskişehir Osmangazi University, 

got his BS and MS in Physics from 

Anadolu University in 1988 and 

1991, respectively, and PhD in 

Physics from Eskişehir Osmangazi 

University in 1998. He worked as a 

research assistant in the Physics 

Department of Eskişehir Osmangazi  

University from 1990 to 1998, where he joined the same 

department as a faculty member in 1998. Author of 

many publications. Advised various graduate thesis and 

dissertations. His research interests include photonics, 

nonlinear optics, and waveguide technology.  

http://orcid.org/0000-0003-0468-8087 

 

 

Authors’ contributions 
 

All the authors contributed equally to the manuscript. 

 

Характеристичні частоти поперечних електричних мод у подвійному негативному планарному 

хвилеводі з керрівською нелінійністю 

A. Yalçınkaya, A. Çetin 

Анотація. Для електричного поля отримано рівняння еволюції напрямлених поперечних електричних мод у 

планарному хвилеводі з подвійним негативним сердечником. Здійснено пошук спеціальних розв’язків 

дисперсійного рівняння для випадку з подвійною позитивною симетричною оболонкою. Відповідні власні 

моди сформульовані в термінах характерних частот як новий метод, і ці частоти, що відповідають осцилюючим 

спрямованим модам, знайдені для різних хвильових чисел і ширин ядра, припускаючи, що модель Друде без 

втрат може бути використана для основного середовища з нелінійністю типу Керра. Результати показують, що 

нормовані характеристичні частоти зростають зі збільшенням хвильових чисел і номерів мод. 
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