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Abstract. Copper indium gallium selenide solar cells (CIGS-SCs) have gained attention 

due to their cost-effectiveness and environmentally friendly characteristics, making them a 

promising option for future electricity generation. The efficiency of CIGS-SCs can be 

enhanced by adding a back surface field layer (BSFL) under the absorber layer to reduce 

recombination losses. In this study, the electrical parameters, such as the series resistance, 

shunt resistance, and ideality factor, are calculated for CIGS-SCs with an advanced design, 

using the SC capacitance simulator (SCAPS) software. The detailed model used in the 

simulations considers the material properties and fabrication process of BSFL. By utilizing 

a reduced graphene oxide (rGO) BSFL, a conversion efficiency of 24% and a significant 

increase in the fill factor are predicted. This increase is primarily attributed to the ability of 

the rGO layer to mitigate the recombination of charge carriers and establish a quasi-ohmic 

contact at the metal-semiconductor interface. At higher temperatures, BSFL can become 

less effective due to an increased recombination and, in turn, a decreased carrier lifetime. 

Overall, this study provides valuable insights into the underlying physics of CIGS-SCs with 

BSFL and highlights the potential for improving their efficiency through advanced design 

and fabrication techniques. 
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1. Introduction 

 

Solar cells (SCs) are a critical technology for creating a 

cleaner and more sustainable future. SC development 

offers renewable energy generation, energy independence 

through reduced reliance on fossil fuels and oil imports 

as well as cost-effectiveness through affordable energy 

generation. SCs have gained significant importance in 

recent years and will continue to expand in significance 

as we strive for a more sustainable future. 

Copper indium gallium selenide (CuInGaSe, CIGS) 

SCs are a type of thin-film SC technology that offers 

high efficiency, low cost, flexibility, good low-light 

performance, and durability [1–3]. These properties make 

CIGS-SCs well suited for various applications, such as 

building-integrated photovoltaic, portable electronic 

devices, spacecraft, and their stability to high-power 

radiation [4]. Thin-film SCs are a type of SC made using  

 

a thin layer of absorber material. These SCs are 

lightweight, flexible, and can be produced using low-cost 

and high-throughput processes. There are several types of 

thin-film SCs based on cadmium telluride (CdTe) [5], 

CIGS [6, 7], Cu2ZnSnS4 [8], silicon [9, 10], organic 

photovoltaic [11], perovskite [12, 13] and tin selenide 

(SnSe) [14]. Each of these SC types has unique 

properties and advantages that make them useful in 

different applications. 

CIGS-SCs are known for their high efficiency and 

flexibility, while perovskite SCs have only the potential 

to be stable, low-cost, and highly-efficient. Although 

thin-film SCs are still less commonly used than 

traditional silicon-based SCs, they offer great promise for 

the future of solar energy due to their low cost, 

flexibility, and versatility. In and Ga are rare and 

expensive elements used in CIGS-SCs that can increase 

the cost of their production and lead to supply  
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competition [15]. Their use can also affect the electrical 

properties of SCs, with excessive In reducing efficiency 

and In substituting by Ga in the upper layers also 

potentially affecting properties. In and Ga are toxic 

elements, leading to safety and health concerns. Hence, 

manufacturers are seeking more sustainable and 

environmentally friendly alternatives to reduce the use of 

these elements and produce more efficient and cost-

effective SCs. 

Molybdenum (Mo) is used as a back contact. 

During the deposition of CIGS for SCs, the presence of 

Mo can cause a reaction with Se resulting in formation of 

molybdenum diselenide (MoSe2). If the interface 

between Mo and CIGS is free of MoSe2, a Schottky 

diode is formed, which acts as a barrier to the flow of 

carriers and leads to resistive losses in SC [16]. However, 

when Mo reacts with Se, the structure becomes 

CIGS/MoSe2/Mo. MoSe2 is a semiconductor with a 

bandgap (Eg) equal to 1.41 eV [17], and this configuration 

gives an ohmic behavior to the CIGS/Mo heterocontact. 

Therefore, to establish the ohmic contact with the CIGS 

absorber layer, it is necessary to use a metal with a low 

work function. However, this can be challenging due to 

the high barrier height between metal and CIGS. One 

effective solution is incorporating an extra layer formed 

from the back surface field layer (BSFL) material. This 

additional layer reduces the barrier height or narrows its 

width, thereby facilitating the formation of the ohmic 

contact. 

This theoretical research aims to predict how to 

improve the overall effectiveness of the SC concept by 

fine-tuning the parameters of the CIGS and BSF layers 

[18]. This research uses the one-dimension solar cell 

capacitance simulator (SCAPS) software, which supports 

simulations based on the Poisson equation and carrier 

transport principles. The critical parameters, namely: 

steady-state energy band diagram, interface recombina-

tion, and carrier transport, can be calculated and analyzed 

using these simulations. The ultimate aim of this research 

is to increase the SC efficiency using a comprehensive 

evaluation of factors like quantum efficiency, electron 

affinity, Eg, and device temperature, T. The overarching 

goal is to optimize the SC parameters for significantly 

improved overall performance for advanced renewable 

energy generation. 

2. Materials and methods 

2.1. Simulation of the proposed configuration 

SCAPS is a widely used software tool for simulating and 

analyzing semiconductor device behavior by numerically 

solving fundamental equations in semiconductor physics, 

including the Poisson equation, continuity equation, and 

drift-diffusion equation [19]. These equations describe 

the fundamental physics of semiconductor materials and 

devices, including the behavior of charge carriers, i.e. 

electrons (n) and holes (p), under the influence of electric 

fields and temperature (T). These equations can be 

written as follows. 

The Poisson equation describes the electric potential 

in a semiconductor device and is given as 

 
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where ψ is the electrostatic potential, ρ is the charge 

density, NA and ND are the acceptor and donor densities,  

e is the elementary charge, ε0 is the vacuum permittivity, 

εᵣ(x) is the relative permittivity (dielectric constant), and 

n(x) is the carrier concentration. 

The continuity equations for electrons and holes are 

given as [20] 
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respectively. Jn and Jp are the electron and hole current 

densities, respectively, q is the elementary charge, G is 

the generation rate of electron-hole (e-h) pairs, and R is 

the recombination rate of e-h pairs. 

The current density for electrons and holes can be 

expressed as 
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where µn and µp are the electron and hole mobilities, Dn 

and Dp are the electron and hole diffusion coefficients, 

and φ is the electrostatic potential. SCAPS supports the 

numerical methods for predicting the semiconductor 

device behavior, using material properties, geometry, and 

boundary conditions as input data, and outputs electrical 

characteristics like I–V and C–V curves. 

Fig. 1 shows a CIGS-SC structure composed of 

several layers arranged in the following order: an 

aluminum-doped zinc oxide (ZnO:Al) layer, an intrinsic 

zinc oxide (i-ZnO) layer, a cadmium sulfide (CdS) layer, 

a p-type CIGS absorber layer, a reduced graphene oxide  

(rGO) BSFL, and a Mo layer placed at the bottom.  
 

 

 
 

(a)                                                (b) 

Fig. 1. The designs of a conventional CIGS solar cell (a) 

adopted from [18, 21, 25] and a proposed cell with BSFL (b). 
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The function of the rGO layer is to enhance the SC 

performance by acting as BSFL between the absorber and 

the back Mo contact. This structure is being compared to a 

conventional CIGS-SC without BSFL. Eg of rGO varies 

depending on the synthesis method and the degree of 

reduction. Generally, GO has a much higher Eg than 

graphene due to oxygen-containing functional groups 

disrupting the graphene lattice conjugation. The reduc-

tion of GO removes some of these functional groups and 

restores the conjugation, leading to a decrease in Eg.  

GO has Eg of ~ 2.2 eV, while rGO exhibits Eg within the 

range 1.00…1.69 eV [21–23], depending on the degree 

of reduction. We used Eg = 1.09 eV for rGO [24]. 

2.2. Material parameter 

Numerical simulations, particularly using the SCAPS 

program, have played a crucial role in advancing our 

understanding of chalcogenide-based SCs. SCAPS  

relies on fundamental semiconductor physics equations, 

including continuity equations for free electrons and 

holes, as well as the Poisson equation. It offers extensive 

parameter customization, namely: bandgap, electron 

affinity, mobility, doping, etc. Various lighting spectra 

are available, including AM0, AM1.5D, monochromatic, 

and more, alongside standard test conditions (STC) like 

global air mass (AM 1.5G), 300 K, and 1000 W/m
2
 

incident light power. Table 1 shows the characteristics of 

layers used for the simulated SCs. 

3. Results 

SCAPS was used to study how the photoelectrical 

properties of CIGS-SCs can be influenced by reducing 

the thickness of the absorber layer. The numerical 

outcomes also demonstrate the impact of the 

incorporated rGO as BSFL on the device performance. 

This work investigated the effects of adjusting the 

thickness of the CIGS and BSF layers, as well as T, on 

the photovoltaic properties of SC. 

 

 

 

3.1. Сonventional CIGS solar cell 

3.1.1. Thickness adjusting of the CIGS absorber layer 

This section aims to analyze the performance of 

ZnO/CdS/CIGS-SCs with different CIGS absorber layer 

thicknesses using the parameters presented in Table 1. 

The primary objective is to determine the optimal 

absorber layer thickness for SC. 

Fig. 2 presents the trends of fill factor (FF), open-

circuit voltage (VOC), short-circuit current density (JSC), 

and efficiency (η) for SC as a function of the p-CIGS 

absorber layer thickness within the range 0.5…3 µm. 

One can see that the thickness of the absorber layer has a 

considerable impact on all parameters. They increase 

significantly with the absorber layer thickness. 

Particularly, JSC increased from 27.1 to 33.3 mA/cm
2
. 

This is mainly caused by the back surface recombination 

that occurs at the interface between CIGS and Mo. Due 

to the reduced thickness of the layer, high-energy 

photons (short wavelengths) can penetrate deeply into the 

layer and generate e-h pairs in the CIGS/Mo contact area. 

However, most of these e-h pairs recombine in this 

region, which results in a lower JSC. Furthermore, when 

the layer thickness is further reduced to 0.5 µm, degra-

dation of VOC drops to 0.75 V. The fluctuation in VOC is 

caused by recombination of photogenerated carriers. 

As a result of the decrease in VOC and JSC, the 

device efficiency decreases. According to a recent inves-

tigation, the CIGS-SCs exhibit the highest efficiency at a 

thickness of 3 µm [32]. At this thickness, we calculated 

VOC = 0.81 V, JSC = 34.48 mA/cm
2
 and FF = 83.35%, 

resulting in η = 23.33%. These values were compared 

with the reference values, and it was found that FF was 

similar to the reference value of 83% [18]. VOC is within 

the range 0.81…0.82 V [33, 34], while JSC = 34.13 mA/cm
2
 

[35]. It is worth noting that reducing the absorber thick-

ness can result in the back contact being too close to the 

depletion band [36, 37], leading to similar changes in the 

performance parameters as reported in other studies [38]. 

Table 1. Parameters of simulation used in the layers of solar cells. 

 

Parameters 
Layer material 

CIGS [26] CdS [27] ZnO [28] Al:ZnO [29] rGO [21, 30, 31] 

Thickness (µm) 3 0.05 0.6 1 0.03…0.1 

Bandgap (eV) 1.3 2.4 3.4 3.4 1.09 

Electron affinity (eV) 4.5 4.4 4.6 4.6 3.2 

Dielectric permittivity (m
–1

) 13.6 10 9 9 10 

CB density of states (m
–3

) 2.2·10
18

 2.2·10
18

 2.2·10
18

 2.2·10
18

 2.2·10
18

 

VB density of states (m
–3

) 1.8·10
19

 1.8·10
19

 1.8·10
19

 – 2·10
18

 

Electron/hole mobility (cm
2
V

–1
S

–1
) 100/25 100/25 100/25 100/25 320/123 

Electron thermal velocity (cm/s) 10
7
 10

7
 10

7
 10

7
 – 

Hole thermal velocity (cm/s) 10
7
 10

7
 10

7
 10

7
 – 

Defect density (cm
–3

) 10
14

 10
15

 10
15

 10
15

 10
15

 

Acceptor density (cm
–3

) 1.1·10
18

 – – – 2·10
18
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Fig. 2. Photovoltaic performances of the CIGS solar cells as a 

function of the absorber thickness: FF (fill factor), VOC (open-

circuit voltage), JSC (short-circuit current), and efficiency. 
 

 

3.1.2. Quantum efficiency of the CIGS layer at 

different thicknesses 

Figs. 3 shows the quantum efficiency (QE) spectrum of 

the studied SC of different CIGS thicknesses, where QE 

increases with the thickness. This occurs because thicker 

layers will increase the number of photons, as well as the 

production and collection of e-h pairs. Initially, for the 

thin layer measuring just 0.5 µm, QE exhibits a gradual 

decline after the absorption peak, approximately at 

500 nm (Fig. 3). As the thickness exceeds 2.5 µm, 

minimal discernible shifts in QE are observed. This 

implies that the electrical parameters demonstrate a 

notable elevation up to this threshold layer thickness. 

3.2. CIGS solar cell with rGO BSFL 

3.2.1. Comparison of conventional and proposed solar 

cell with rGO BSFL 

Being based on previously mentioned findings, we can 

summarize that the SC with a thickness of 3 µm is ideal. 

After embedding BSFL with the thickness 0.03 µm, we 

detect an increase in the SC efficiency up to 24.54%. 

Fig. 4 shows the behavior of fill factor, open-circuit 

voltage, short-circuit current density, and efficiency for 

SCs with BSFL layer and without it as a function of the 

p-CIGS absorber layer thickness within the range 

0.5…3 µm, while the rGO thickness is 0.03 µm. As we 

can see, under the same absorption layer thickness, the 

proposed cell significantly improved all photovoltaic  
 

 

Fig. 3. Quantum efficiency spectra of the CIGS absorber layer 
of different thicknesses. (Color online) 

 

 

performances. The efficiency of the conventional CIGS-

SC with a 1.5-µm absorber layer is 21.67%. However, 

when a thin 0.03-µm rGO BSFL is embedded, the 

efficiency of modified CIGS/rGO-SC increases to 23.44%. 

This finding is in line with the theoretical study reported 

in the literature [39–41] along with one experimental 

study [42]. The mentioned increase can be explained by 

the following. Both rGO and CIGS operate as absorbers 

(with a total thickness of 1.53 µm), with rGO assisting in 

increasing the photon energy absorption by the cell. 

Fig. 5, which displays the band diagram of these two SCs 

produced using SCAPS, explains this. The extra layer of 

rGO, by which a quasi-ohmic contact is generated at the 

metal (Mo) – semiconductor (CIGS) interface, can be the 

reason of the improvement in the photovoltaic 

parameters: it reduces recombination at the rear surface, 

increases VOC and JSC. As a result, a huge number of 

photons can be collected and more e-h pairs are 

generated. Changing the standard cell design to the one 

with the rGO BSFL described herein, JSC rises from 33.2 

to 34.39 mA/cm
2
, and VOC increases from 0.79 to 0.82 V. 

Therefore, 1.5 µm is the ideal absorber layer thickness 

for the proposed cell. The decrease in the CIGS layer 

thickness will certainly reduce the cost of SC fabrication. 

3.2.2. Adjusting of the BSFL thickness 

To enhance the SC efficiency, the thickness of the rGO 

layer was varied within the range of 0.03…0.1 µm, while 

the thickness of the CIGS layer was constant (1.5 µm) as 

depicted in Fig. 6. 

The experimental results indicated a significant 

increase in the efficiency from 0.03% to 23.44%, which 

further improved to 23.94% for a thickness of 0.05 µm in 

the rGO layer. However, beyond this thickness, the 

figures show no substantial change in the efficiency. 

Nevertheless, some experimental findings reveal that a 

thicker layer might not be suitable as it could result in 

increased series resistance, leading to a reduced overall 

SC efficiency. Consequently, FF decreases with a thicker 

BSFL. 
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3.2.3. The impact on quantum efficiency 

Fig. 7 displays the simulated QE spectra for these two 

device structures. Due to improved photon absorption by 

the thicker absorber layers, the QE of CIGS/rGO-SCs 

initially increases with increasing the CIGS layer 

thickness. BSFL serves as a reflector and is critical in 

boosting light-collection performance. Photon absorption 

is reduced as back reflectivity improves, boosting QE.  

 

 

 

After adding BSFL, the QE is enhanced to a high level of 

95.44% at 500 nm due to an increased collection of 

photons at longer wavelengths within the range of 500 to 

1000 nm. Due to the device producing more e-h pairs as 

a result of high absorption, the current density rises. 

Additionally, because each substance can only absorb 

photons within a specific wavelength range of the visible 

light spectrum, all curves begin to fall toward a zero QE 

around 1000…1100 nm.  

 

Fig. 4. Photovoltaic performances of the studied CIGS solar cells with (red circles) and without (blue squares) rGO BSFL.(Color 
online) 

 

  

Fig. 5. The SCAPS created an energy band diagram without (left) and with rGO BSFL (right). (Color online) 
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Fig. 6. Photovoltaic characteristics of CIGS solar cells at the 

different rGO thickness: fill factor, JSC, VOC and efficiency. 
 

 

Recycling is necessary to guarantee a future supply 

of both elements (In and Ga) used in CIGS and keep 

manufacturing costs low [43]. Compared with other thin-

film SCs, In and Ga are the most effective materials. 

Unfortunately, they are costly components in CIGS-SCs 

[44, 45], so it is not advisable to produce absorbers with 

thicker CIGS layers. Similarly, reducing the thickness of 

the CIGS material can lower the quantities of Ga and In 

required, therefore, lowering SC production cost. In 

addition, these results show an improved efficiency when 

using the new cost-effective SC layout as compared to 

old designs, since rGO is less expensive and more 

generally accessible than Ga and In. Thus, our findings 

can help to produce CIGS-SCs at a higher profit. 

3.2.4. Effect of operating temperature on CIGS solar 

cell 

T influences the performance of CIGS-SCs. As T rises, 

VOC and FF of the cell typically decrease, while JSC rises 

in Fig. 8. We varied T from 290 to 390 K. At high T, this 

reduces the cell overall power output. The Shockley–

Queisser theory can model the temperature dependence 

of the photovoltaic parameters of CIGS-SCs. The relation-

ship between JSC and VOC as a function of T is [46] 













0

log
J

J

q

nkT
V SC

OC ,      (6) 

where n is the ideality factor, k is the Boltzmann 

constant, q is the electron charge, and J0 denotes the 

reverse saturation current. 

 

 

Fig. 7. Quantum efficiency spectra of the CIGS solar cells with 

and without rGO BSFL. (Color online) 

 

 
The optimal operating T for CIGS-SCs is typically 

within 25…35 °C. It is worth noting that the temperature 

coefficient of CIGS is usually negative, meaning that SC 

efficiency decreases with T. For the initial CIGS-SCs, 

operating T can affect VOC, JSC, and FF (Fig. 9). At low T, 

VOC increases due to reduced recombination rates, while 

JSC drops due to decreased carrier mobility. As T rises, 

VOC decreases due to increased intrinsic carrier 

concentration and reduced Eg, while JSC increases due to 

amplified carrier mobility. However, FF decreases with T 

due to enlarged series resistance. It can be observed that 

CIGS/rGO-SCs generally have a higher performance 

than those without BSFL. In CIGS/rGO-SCs, operating T 

can affect the performance differently. Thin BSFL is 

deposited on the back surface of SC to reduce the recom-

bination of charge carriers. At higher T, BSFL can become 

less effective due to a decrease in the carrier life-time.  
 
 

 
 

Fig. 8. Temperature-dependent I–V characteristics of a CIGS 

solar cell with rGO BSFL. (Color online) 
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Fig. 9. Temperature dependences of photovoltaic characteristics 

of CIGS solar cells with and without rGO BSFL. (Color online) 

 

 

Overall, the effect of operating T on CIGS-SCs depends 

on various factors, namely: the material properties, SC 

design, and operating conditions. However, it is 

important to keep the operating T of CIGS-SC within a 

certain range to ensure an optimal performance. 

 

Fig. 10. I–V characteristics of CIGS solar cells with and 

without rGO BSFL. (Color online) 

 

 

3.2.5. I–V characteristics of CIGS solar cells 

The I–V characteristic of CIGS-SCs describes their 

performance under different electrical loads. Fig. 10 

depicts the I–V curves at the optimal device settings with 

and without BSFL with absorber layers of various 

thicknesses. One can see that the CIGS/rGO-SC exhibits 

superior I–V characteristics as compared to that without 

BSFL, given that the CIGS thickness is 1.5 µm and the 

BSFL thickness is 0.05 µm. 

Table 2 presents a summary of the photovoltaic 

performance of different SCs, including both 

experimental and simulation data. The data highlights the 

diverse range of experimental and simulated SCs, each 

exhibiting various performance. The efficiency of these 

SCs depends on the utilized materials and the presence or 

absence of BSFL. Additionally, the table underscores the 

importance of material selection and BSFL incorporation 

in achieving the enhanced photovoltaic performances. 
 
 

 

 

Table 2. Enhanced photovoltaic performances of the proposed CIGS solar cell and those reported elsewhere. 

 

Type of research Absorber BSF layer 
Efficiency (%) 

without BSF 

Efficiency (%) 

with BSF 
References 

Experimental CIGS – 19.90 – [47] 

Experimental CIGS – 18.10 – [48] 

Experimental CdTe Graphene – 3.20 [40] 

Simulation ZnTe Sb2Te3 7.14 18.33 [49] 

Simulation Cu2ZnSnS4 Cu2ZnSnS4 12.05 14.11 [50] 

Simulation CIGS Si 16.39 21.33 [26] 

Simulation CIGS – 22.67 – [51] 

Simulation CZTSSe SnS 12.30 15.70 [52] 

Simulation CdTe Graphene – 15.00 [40] 

Simulation CIGS p
+
 CIGS 20.78 21.95 [39] 

Simulation CIGS rGO 21.68 23.94 this work 
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4. Conclusions 

A CIGS solar cell with rGO BSFL was theoretically 

modeled and its electrical parameters were calculated. 

The BSFL plays a pivotal role in enhancing the efficiency 

of CIGS-SCs. Precisely tuning the composition, 

thickness, and fabricating BSFL is essential for achieving 

optimal performance. Ongoing research in this domain 

promises further advancements in CIGS-SCs and thin-

film photovoltaics in general. We predicted an SC 

efficiency of 23.9% with rGO BSFL. This achievement 

prompted a comparative analysis between conventional 

SCs and those augmented with rGO BSFL. The results 

revealed a substantial enhancement in the efficiency, 

primarily attributed to the ability of the rGO layer to 

mitigate the back surface recombination and establish a 

quasi-ohmic contact at the metal-semiconductor interface. 

The combined thickness of the CIGS and rGO layers in 

this high-efficiency configuration was 1.5 and 0.05 µm, 

respectively, resulting in an overall efficiency of 23.9%. 

The modeled structure, as shown in this research, 

holds a good potential as a viable option for thin-film 

SCs. Its success not only underscores the significance of 

BSFLs but also highlights the importance of innovative 

materials in pushing the boundaries of SC efficiency. 

This opens new options for renewable energy 

technologies, offering a promising path toward more 

efficient and sustainable photovoltaic solutions. 
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Підвищення ефективності сонячних елементів CIGS завдяки відновленому оксиду графену польового 

шару тильної поверхні 

D. Fatihi, M.P. Bhandari, S. Golovynskyi, K. Abderrafi, R. Adhiri 

Анотація. Сонячні батареї з селеніду міді, індію і галію (CIGS-SC) привернули увагу завдяки своїй 

економічній ефективності та екологічним характеристикам, що робить їх перспективними для майбутнього 

виробництва електроенергії. Ефективність CIGS-SC можна підвищити шляхом додавання польового шару 

тильної поверхні (BSFL) під шар поглинача для зменшення втрат на рекомбінацію. У цьому дослідженні 

електричні параметри, такі як послідовний опір, опір шунта та коефіцієнт ідеальності, розраховуються для 

CIGS-SC із передовою конструкцією за допомогою програмного забезпечення симулятора ємності сонячних 

батарей (SCAPS). Детальна модель, яка використовується в симуляції, враховує властивості матеріалу та 

процес виготовлення BSFL. З використанням відновленого оксиду графену (rGO) BSFL прогнозується 

ефективність перетворення на рівні 24% і значне підвищення коефіцієнта заповнення. Це підвищення, у першу 

чергу, пояснюється здатністю шару rGO послаблювати рекомбінацію носіїв заряду та встановлювати 

квазіомічний контакт на межі поділу метал-напівпровідник. При вищих температурах BSFL може стати менш 

ефективним через збільшення рекомбінації і, у свою чергу, зменшення тривалості життя носіїв. Загалом, це 

дослідження дає цінну інформацію про фізичні основи CIGS-SC з BSFL і підкреслює потенціал для 

підвищення їх ефективності за допомогою вдосконалених методів проектування та виготовлення. 

Ключові слова: CIGS, сонячні елементи, відновлений оксид графену (rGO), польовий шар тильної поверхні, 

SCAPS. 
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