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Abstract. X-ray diffraction methods are highly informative for investigation of crystal 

structure imperfections. They are widely applied to determine the characteristics of 

structural defects in various materials. In this work, by processing experimentally measured 

azimuthal dependences of the total integrated intensity of dynamical diffraction for three 

asymmetric Bragg reflections for a Si single crystal irradiated with boron ions, the 

thicknesses of the amorphous absorbing surface layer and the kinematically scattering layer 

as well as the concentration of randomly distributed dislocation loops in the dynamically 

scattering volume located under the above-mentioned disturbed surface layers are obtained. 
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1. Introduction 

Materials with quantum dots are widely used in advanced 

electronic devices such as photodetectors, LEDs, lasers, 

memory elements, etc. [1]. Quantum dots are solid 

nanoparticles in the form of precipitates or inclusions of 

new phases that have a discrete spectrum of electronic 

states depending on their size. Ion implantation is also 

used for creating nanoprecipitates buried in a solid 

matrix. This process leads to self-organization effects 

such as separation of the precipitate ensembles (see, e.g. 

[2–6]). The development of an ensemble of precipitates 

in a solid solution goes through the stages of nucleation, 

growth of all precipitate nuclei from the solution, and, 

finally, passes to the stage of Ostwald ripening, when the 

concentration in the solution decreases approaching the 

equilibrium value, and the growth of some precipitates 

occurs due to the dissolution of the neighboring, smaller 

precipitates [7, 8]. The interaction between the precipitates 

at the Ostwald ripening stage explains the creation of 

ordered nanoparticle ensembles based on self-organiza-

tion effects [9–13], which is one of the most important 

tasks of nanotechnology. 

Because of ion bombardment during boron 

implantation in silicon, structural transformations such as 

formation of a highly disordered (amorphized) thin 

surface layer as well as formation and accumulation of  
 

radiation defects, are possible. Subsequent annealing or 

repeated ion implantation causes recrystallization in the 

highly disordered (amorphized) thin surface layer. In the 

technology of manufacturing photovoltaic cells, control 

of the parameters of both the initially amorphized and 

recrystallized layers is important. 

Implantation and subsequent annealing lead to 

significant transformations of the X-ray rocking curves 

compared to the rocking curves of the original sample. In 

[14], influence of the magnitude and shape of the strain 

distribution in the surface layers of single crystals, i.e., 

the relative change Δd/d of the interplanar distance 

normal to the surface with respect to the substrate, on the 

shape of the two-crystal Bragg reflection curves was 

experimentally discovered and studied, and a method for 

restoring the strain distribution profile over depth was 

developed based on the semi-kinematical scattering 

theory. It was established [14, 15] that the depth of the 

maximum deformation increases with the implantation 

energy. As the implantation dose increases, the height of 

the maximum deformation and its integral value 

proportionally increase. 

In addition to the deformation profiles in alloyed 

materials, it is also necessary to determine the statistical 

characteristics of microdefects randomly distributed 

within the bulk. For example, it is known that Czochralski 

grown (CZ) Si single crystals, even after growth, contain  
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large dislocation loops with an average radius R = 20 μm 

and small dislocation loops with an average radius R = 

0.02 μm. It was shown in [16] that boron implantation 

into silicon leads to formation of dislocation loops. 

Determining the structure of solids using advanced 

tri-axial diffractometry methods by measuring the 

distribution of the diffracted intensity in the reciprocal 

lattice space requires measuring low intensities 

differentially at each point of the reciprocal space. Use of 

integrated parameters allows a significant reduction of 

the measuring time and increase of the diagnostics 

precision. In the works of M.O. Krivoglaz [17], the 

defects were classified according to the nature of their 

influence on the kinematical pattern of scattering. Both 

Bragg and diffuse scattering were described in the 

kinematical approximation. However, the total integrated 

reflection intensity at kinematical diffraction does not 

depend on the degree of distortion of the crystal lattice. 

Hence, for kinematically scattering crystals with defects, 

methods based on measuring total integrated scattering 

intensities are not suitable. 

Additional opportunities are provided by using a 

dynamical scattering pattern instead of a kinematical one. 

The integrated characteristics of the dynamical scattering 

pattern are more sensitive to structural imperfections. At 

the same time, measuring and processing the depen-

dences of the total integrated intensity of dynamical 

diffraction (TIIDD) on the diffraction conditions allows 

quantitative determination of the characteristics of the 

defect structure of single crystals [18]. 

The aim of this work is to clarify the possibilities of 

determining the parameters of the defect structure of 

single crystals irradiated with boron ions using the 

method of azimuthal dependences (AD) of TIIDD. 

2. AD TIIDD theoretical model for a single crystal 

with a disordered surface layer and randomly 

distributed defects 

The studied crystal is divided into three zones:  

(1) non-diffracting absorbing ‘amorphous’ layer with  

the thickness tam (disordered surface layer – DSL),  

(2) stressed zone with the thickness tk.s.l., and  

(3) dynamically scattering single crystal containing 

randomly distributed defects (RDD) [20]. The total 

integrated intensity of dynamical diffraction of the three-

layer system is 
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Here, C is the polarization factor, 

     2sin
2

HrQ  is the reflectivity per unit path 

length, Hr  is the real part of the Fourier component of  

 

the crystal polarizability, t is the crystal thickness, γ0 and 

γH are the direction cosines of the wave vectors of a plane 

wave incident on a crystal relative to the internal normal 

to the input surface of the crystal and the diffracted wave, 

respectively, and μ0 is the linear photoelectric absorption 

coefficient. 

The Krivoglaz–Debye–Waller factor LH = –lnE is 

[17] 
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R0 is the average radius of the dislocation loops, с is the 

dislocation loop concentration, b is the Burger vector,  
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The directional cosines are calculated by the 

following expressions: 

 cossincossincos0 BB ,  

 cossincossincos BBH , 

where ψ is the angle between the reflecting planes and 

the crystal surface, and φ is the azimuth angle, 

respectively. 

For RDD of the Coulomb type with the radius R0 

and concentration c [19] 

BmCcEds 0
220  , 

2

22

0
2




HrcH
m , 
















2
0

21 ln
r

e
bbB , 

3

2
11

B
Bb  , 

2
cos 22

12

B
Bb B , 

where 


 0
0

R
r  and  HrH C  0  is the 

extinction length under assumption r0 < 1. 

For randomly distributed dislocation loops 
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where ν is the Poisson ratio. 

If 0
0 ds  and 10 r ,  0

0 rfds 
  , 

      00000 ln1383ln25 rrrrrf  . 

Hence, the parameters E, 0
ds  and   and, 

consequently, TIIDD Ri interrelate with the RDD 

characteristics (c, R0, b). 
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3. Determination of DSL characteristics by the AD 

TIIDD method 

The DSL parameters were characterized by the AD 

TIIDD method at Bragg asymmetric diffraction. In 

particular, the penetration depth of X-rays into the 

studied crystal at different asymmetric reflections was 

investigated. The presented experimental results were 

obtained using a Panalytical Philips X'Pert PRO diffracto-

meter (V. Lashkaryov Institute of Semiconductor 

Physics, NAS of Ukraine) (λCuK = 1.5406 Å) equipped 

with high resolution X-ray optics, namely a Ge (220) 

monochromator and a double Ge (220) analyzer. The 

studied Si sample was irradiated with boron ions at a 

dose of 10
12

 atoms/cm
2
 and ion energy of 400 keV. 

The AD of the penetration depth for various 

reflections of the (111) Si samples were calculated. The 

calculations presented in this article were done for Si single 

crystals with microdefects according to the models proposed 

in [20, 21]. The calculation results are shown in Fig. 1. 

Fig. 1 shows that the penetration depth almost does not 

depend on the azimuth angle for the angles between the 

reflecting planes and the crystal surface ψ << θB (Figs. 1b 

and 1c). At the same time, the penetration depth at large 

angles ψ significantly decreases (almost to ~ 0.3 μm). 

X-rays total external reflection is used at angles less 

than the critical angle  2c . The relative decrement 

of refraction δ for X-rays with the wavelength λ ~ 1 Å 

and carbon-containing compounds is 10
–6

. For real 

systems with absorption, the dependence on the angle is 

smooth. In particular, diffraction of X-ray beams incident 

on the surface of a crystal at a small  angle Φ0 ≤ 1 and Φ0  

 

 

close to 0c  is studied (here, 0  is the 

polarization). For silicon, Φc = 13.35' = 0.2225°. It 

should be noted that study of grazing dynamical X-ray 
diffraction in perfect single crystals [22, 23] and single 
crystals with defects [24] is widely used.  

In this work, diffractometric measurements were 
carried out for the minimum penetration depths of X-rays, 
which corresponded to the angles 

   2225.0arcsin 0 H . For example, for asymmetric 

(220) reflection at φ = 128.3°, 

  cH  6.3805.0arcsin 0 . 

Implantation of boron ions in a silicon single crystal 

leads to formation of an amorphous absorbing layer, the 
thickness of which increases with the ion energy. 
According to the proposed model, an elastically stressed 

kinematically scattering layer with the thickness 
proportional to the extinction length with a 
proportionality coefficient k is formed between this 
absorbing layer and the dynamically scattering volume. 

At Habsam lt  0 , there is no diffraction in the 

crystal and the intensity of the incident X-rays only 
decays compared to that for a perfect crystal with tam = 0.  

It should be noted that at absam lt  , TIIDD of a 

single crystal is the sum of the kinematic and dynamical 

terms attenuated in the absorbing layer. 
For investigation of the sensitivity of the TIIDD to 

the characteristics of the DSL at different reflections, the 

dependences of the TIIDD on the radiation penetration 
depth labs(φ) into a crystal with the DSL parameters k = 
0.033 at tam = 0.1 μm [19, 25, 26] were calculated. The 

calculation results are presented in Fig. 2. 
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Fig. 1. AD of the penetration depth of X-rays into the studied single crystal. 
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Fig. 2. Dependences of the TIIDD Ri of a crystal with a DSL 

normalized to the IIDD of a perfect crystal, crperficrperf RRR .. r  

crperficrperf RRR .. r , on the absorption depth labs of CuKα radiation: 

reflection (113) (a), and reflections (400), (220) and (224) (b). 

 

 

As can be seen from Fig. 2a, the dependences for 

the reflection (113) at ψ = 29.5°, 58.52° and 79.98° are 

substantially different because of the difference in the 

maximum penetration depths: labs.max (ψ = 29.5°) = 

28.66 μm, labs.max (ψ = 58.52°) = 17.19 μm and labs.max  

(ψ = 79.98°) = 5.73 μm. In Fig. 2b, the dependences for 

the reflections (220), (400) and (224) are similar, because 

the maximum penetration depths for these reflections are 

equal, labs.max = 22.93 μm. 

 

4. Diagnostics of defect structure of a single crystal 

containing three defect types by the AD TIIDD method 

Measurements of the AD TIIDD for the original and 

irradiated samples were performed for the reflections 

(224) CuKα (ψ = 19.47°), (220) CuKα (ψ = 35.27°) and 

(115) CuKα (ψ = 70.5289°). 

It was shown that for the (224) CuKα reflection 

(ψ = 19.47°), the maximum absorption depth is  

labs.max = 45.86 μm and the maximum extinction depth is 

Λmах = 15.48 μm; for the (220) CuKα reflection 

(ψ = 35.27°), the maximum absorption depth is  

labs.max = 22.93 μm and the maximum extinction depth is 

Λmах = 5.64 μm; for the (115) CuKα reflection 

(ψ = 70.5289°), the maximum absorption depth is  

labs.max = 17.20 μm and the maximum extinction depth is 

Λmах = 8.64 μm. The experimental and calculated AD 

TIIDD are shown in Fig. 3. Here, the markers ▪ are the 

experimentally measured AD TIIDD for the original Si 

single crystal and the markers ● are the experimentally 

measured AD TIIDD for the Si single crystal irradiated 

with B ions. The solid line is the AD TIIDD calculated 

taking into account the influence of the DSL and RDD, 

the dashed line is the AD TIIDD calculated taking into 

account the influence of only the amorphous absorbing 

sub-layer of the DSL, the dashed-dotted line is the AD 

TIIDD calculated taking into account the influence of 

only the DSL, and the dotted line is the AD TIIDD calcu-

lated taking into account the influence of only the RDD. 

Comparison of the experimental AD TIIDD for the 

original and irradiated samples shows a significant 

difference between the AD TIIDD of the irradiated single 

crystal measured for different reflections. As shown 

below, this effect is caused by predominant manifestation 

of different defect types under different diffraction 

conditions on the TIIDD. 
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Fig. 3. AD of the TIIDD normalized to the IIIDD of the perfect 

crystal: reflection (224) (a), reflection (115) (b), and reflection 
(220) (c). 
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Fig. 3a shows that the measured values of the 

normalized TIIDD are almost equally far from the 

calculated values both in the presence of only RDD and 

only DSL in the irradiated sample. Figs 3b and 3c 

demonstrate that the measured values of the normalized 

TIIDD are close to the calculated values in the presence 

of only DSL in the irradiated sample. In this case, 

account of both defect types makes the calculation results 

coincide with the experiment. 

Comparison of the ADs of the TIIDD calculated for 

the cases of presence of only an absorbing layer in the 

irradiated single crystal and presence of both absorbing 

and kinematically scattering layers shows that the influence 

of the kinematically scattering layer more strongly com-

pensates the influence of the absorbing layer for quasi-

symmetric (115) reflection than for strongly asymmetric 

(220) reflection. This is due to the fact that the ratio of 

the absorption length to the extinction length in the second 

case is larger. Therefore, strongly asymmetric reflection 

(220) is selectively sensitive to the amorphous absorbing 

layer, the quasi-symmetric reflection (115) is selectively 

sensitive to the kinematically scattering layer, and the 

reflection (224) is selectively sensitive to the RDD. 

By processing the experimental data for three 

above-mentioned reflections for the ion-irradiated 
sample, the following values of the defect structure 
parameters are obtained: the concentration of randomly 

distributed dislocation loops with the radius R = 0.02 μm 

is equal to с = 5·10
13

cm
–3 

( 10105.2 cc ), the 

thickness of the amorphous absorbing surface layer  

tam = 1 μm, and the thickness of the kinematically 
scattering surface layer tksc = kΛ(a/d), k = 0.08.  
Therefore, tksc(115, φ = 90°) = 44.923·0.08 = 3.6 μm, 
tksc(220, φ = 90°) = 15.941·0.08 = 1.3 μm, and  

tksc(224, φ = 90°) = 75.826·0.08 = 6 μm. 
For analyzing the experimental results from [14], 

the value of the IIDD ratio for a perfect crystal Rperf.cr to 

the TIIDD Ri for the ion-irradiated crystal, 

exp.exp1 icrperf RRr , is suggested to use to 

quantitatively characterize deformation of the crystal 

lattice. Fig. 4 shows the dependence  absl













rexp

1
ln  

calculated using the experimental data obtained for 
reflection (220). 

Fig. 5 shows the deformation profiles from [14]  

and the calculated profile   abslexp1ln03.0 r . Here, the 

coefficient 0.03 is chosen by fitting. It should be 
mentioned that the main interest is to the relative 

positions of the profile maxima (dependent on the 
implantation energy), not their dose-dependent heights. 

It can be seen from Fig. 5 that the maximum stress 

values qualitatively correspond to the energy values of 

boron ions during implantation. 

Experimental depth distributions of boron implanted 

at a dose of 10
15 

 
11

B
+
 ions cm

–2
 and an energy of 400 keV 

into amorphous, polycrystalline, and monocrystalline 

silicon, obtained by secondary-ion mass spectrometry 

(SIMS) also had maxima at the depth of 1 μm [27]. 
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Fig. 4.  exp1ln r  versus absorption depth labs for boron-doped 

silicon. 
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Fig. 5. Stress profiles in boron-doped silicon. 

 

5. Conclusions 

The optimal conditions of Bragg asymmetric diffraction 

for diagnosing defects in boron-implanted silicon single 

crystal are found. Namely, reflection (220) is selectively 

sensitive to the amorphous absorbing layer parameters, 

reflection (115) is selectively sensitive to the 

kinematically scattering layer parameters, and reflection 

(224) is selectively sensitive to RDD in the dynamically 

scattering volume. 

The values of the thicknesses of the absorbing and 

kinematically scattering DSL and the concentration of small 

randomly distributed dislocation loops are also obtained. 

It is shown that the ratio of the depth dependence of 

stress calculated for a perfect crystal to the experimental 

TIIDD is similar to the stress profiles obtained earlier 

from the rocking curves, and the maximum stress corres-

ponds to the energy of boron ions during implantation. 
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Визначення параметрів імплантованих іонами шарів монокристалів методом інтегральної динамічної 

дифрактометрії 
 

Г.І. Низкова, Б.М. Романюк, О.В. Дубіковський, О.Й. Гудименко, O.A. Кульбачинський, А.О. Білоцька, 

Т.П. Владімірова, Я.В. Василик, О.С. Скакунова, І.І. Демчик, Л.І. Макаренко, С.В. Лізунова,  

І.М. Заболотний, В.В. Молодкін, О.С. Кононенко, В.В. Лізунов 
 

Анотація. Рентгенодифракційні методи є високоінформативними для дослідження недосконалостей 
кристалічної структури. Вони широко застосовуються для визначення характеристик дефектів структури в 
різноманітних матеріалах. У цій роботі шляхом обробки експериментально виміряних азимутальних 
залежностей повної інтегральної інтенсивності динамічної дифракції для трьох асиметричних Брегг відбиттів 
від монокристала кремнію, опроміненого іонами бору, отримано значення товщин аморфного поглинаючого 
поверхневого шару та кінематично розсіюючого шару, а також концентрації рівномірно розподілених 
дислокаційних петель у динамічно розсіюючому об’ємі під вищевказаними порушеними поверхневими 
шарами. 
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