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Abstract. MXene-based two-dimensional (2D) composites, a class of graphene-like 

transition metal carbides and nitrides, are emerging as excellent materials for photocatalytic 

applications due to their promising characteristics, including tunable functionalities and a 

large surface area. To fabricate MXene-based photocatalysts, various synthesis routes are 

used, namely, hydrothermal, solvothermal, electrostatic self-assembly, and chemical vapor 

deposition. The solvothermal and hydrothermal synthesis methods enhance crystallinity and 

accelerate charge transfer, preventing recombination and boosting photocatalytic activity. 

Furthermore, etching methods influence MXene’s physicochemical properties, impacting 

pollutant removal efficiency. MXene composites are used as promising photocatalysts to 

degrade organic dyes, including Congo Red, Methylene Orange, Rhodamine B, and Methy-

lene Blue. MXene composites, namely TiO2/Ti3C2, Bi2WO6/Nb2CTx and MXene/g-C3N4, 

demonstrate excellent photocatalytic performance, achieving over 90% degradation rate 

under visible irradiation. However, challenges such as scalability, energy consumption, and 

structural stability need further investigation to optimize their large-scale applications. 
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1. Introduction 

Urbanization, industrialization, and rapid infrastructure 
development have increased environmental challenges 
worldwide [1, 2]. Among the major contributors to 

environmental contamination, industrial waste poses 
important risks due to inappropriate disposal and 
inadequate wastewater treatment. Discharging untreated 

industrial runoffs severely pollutes natural ecosystems, 
causing harm to human health and the aquatic system. 
Several industries, including printing, textiles, agri-

culture, polymer production, and nuclear sectors, 
discharge harmful pollutants, namely azo dyes, pes-
ticides, and toxic chemicals, which damage freshwater 
resources and disrupt aquatic biodiversity [3, 4]. 

Knowing these environmental threats, international 
organizations like the Environmental Protection Agency 
and World Health Organization have imposed strict 

regulations, compelling industries to incorporate 
effective wastewater treatment solutions [5]. To tackle 
Industrial water pollution, several wastewater treatment 

methods were developed, namely adsorption [6], preci-
pitation [7], biodegradation [8], solvent extraction [9],  
 

membrane separation [10], chlorination, and sonodegra-

dation [11]. Nevertheless, these conventional methods 

often have limitations, e.g., incomplete pollutant removal, 

high operational costs, and secondary pollution. Among 

these advanced treatment methods, photocatalysis gains 

considerable attention due to its high performance, eco-

friendliness, cost-effectiveness, and ability to fully 

degrade pollutants into non-toxic byproducts [12].  

Photocatalytic degradation, in particular, employs 

solar light to break down pollutants, making it an energy-

efficient and sustainable solution for wastewater treat-

ment. This technique presents an effective pathway toward 

enduring environmental remediation and Industrial sus-

tainability [13]. Photocatalysis is a promising process for 

removing pollutants from water using a photocatalyst under 

UV-visible light [14]. This method creates electron-hole 

pairs (e-h), where holes initiate oxidation, and electrons 

drive reduction reactions, breaking down pollutants [15]. 

Different photocatalytic materials are employed, namely 

molybdenum disulfide (MoS2) [16], tungsten disulfide 

(WS2) [17], cerium oxide (CeO2) [18], and titanium 

dioxide (TiO2) [19]. However, many of these materials  
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suffer from poor charge separation, limited light absorption, 
and low stability, which limits their effectiveness in 
wastewater treatment. To overcome these restrictions, 
researchers must develop advanced photocatalytic mate-
rials with enhanced proficiency, improved stability, and 
broad-spectrum absorption for sustainable environmental 
remediation [20]. MXene was first discovered as a 
photocatalyst in 2014, and, since then, several studies 
have highlighted its potential for degrading toxic 
environmental pollutants in water [21]. MXenes 
(Mn+1XnTx) are compounds of early transitional metal 
atoms (M = Ti, Nb, Mo, etc.) with nonmetal atoms (X = 
C, N) and surface terminations (TX = O, OH, F, Cl) [22, 
23]. MXenes are a rapidly expanding class of two-
dimensional (2D) materials that originate from transition 
metal carbides and nitrides. These materials comprise 
layered structures, where n + 1 layers of early transition 
metals (M, shown in blue in Fig. 1) alternate with n layers 
of carbon or nitrogen (X, depicted in gray in Fig. 1). 
 
 

 

 

The elements with a stripped blue background show 
that these have been used in MAX phases, and their 
MXenes have not been prepared yet. Elements in the red 
background are the A elements that can be selectively 
etched to build MXenes. The green background elements 
are cations that have been intercalated into MXenes. The 
1M and 1A indicate the possibility for the formation of 
single pure transition metal and A element MXenes. SS 
shows the solid solution in the transition metal atomic 
planes (blue) or A element planes (red). 2M shows the 
possibility for the formation of a double transition metal 
MAX phase or MXene. 

Their general formula is Mn+1XnTx, where Tx repre-
sents surface terminations, namely –O, –OH, –F, and/or  
–Cl (marked in orange in Fig. 1). The structural diversity 
of MXenes, illustrated at the bottom of Fig. 1a, con-
tributes to their versatility in numerous applications. 
Moreover, MXenes (Fig. 1a), their precursor MAX 
phases, and intercalated metal ions (Fig. 1b) exemplify  
 

 
 

 

Fig. 1. Elemental map showing the composition of MXenes and MAX phases. (a) The elements used for the synthesis of MXenes 
(bright blue) and those experimentally not confirmed (light blue); the three typical MXene structures are shown at the bottom.  
(b) Elements used for the synthesis of MXenes, MAX phases, and their intercalated ions. Reprinted with permission from Ref. [24]. 
Copyright 2019, American Chemical Society. 

а) 

b) 
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fundamental chemical principles, demonstrating how 

elemental building blocks can be manipulated to develop 

innovative nanomaterials [24]. MXenes demonstrate a 

large specific surface area, exceptional electrical 

conductivity, and tunable band gaps (0.05–2.87 eV), 

making them superior to other 2D materials in photo-

catalysis [25]. Compared to graphene-based photo-

catalysts, MXene-based ones demonstrate somewhat 

higher photocatalytic efficiency. For instance, 

Ti3C2/MoS2 achieves 97.4% dye degradation, surpassing 

g-C3N4/Ag/GO (78%) [26]. This is attributed to MXene’s 

unique functional groups (–F, –OH) and strong 

electrostatic interactions [27].  

This mini-review examines MXene’s role in organic 

pollutant degradation. It also discusses its different 

synthesis techniques and future challenges for enhancing 

MXene-based photocatalysis. 
 

2. Different synthesis methods for the fabrication of 

MXene composites 
 

Various methods are employed to synthesize MXene-

based photocatalysts, including electrostatic self-

assembly, hydrothermal and solvothermal treatments, 

calcination, mechanical/ultrasonic mixing, and others 

[28]. Generally, MXene is synthesized from its parent 

material, Ti3AlC2. This process is usually completed by 

removing the Al layer from the parent material. 

Moreover, the HF acid method was the first to eliminate 

the Al layer from the parent material. The details of 

producing MXene from the MAX (M is an early 

transition metal, A is an A-group element, and X is either 

C and/or N) phase are described in reactions 1, 2, and 3. 

In addition, the generation of –F and –OH groups are 

highlighted in the second and third steps of the reactions. 

.CTiH23AlF3HFAlCTi 232323      (1) 

  .HOHCTiO2HCTi 2223223      (2) 

.HFCTi2HFCTi 222323       (3) 

Among all reported methods, mechanical/ultrasonic 

mixing is the simplest. This method involves vigorous 

mechanical stirring or high-intensity ultrasonic 

vibrations, ensuring strong interactions between MXenes 

and photocatalysts. For instance, Ti3C2Tx hydrogels are 

synthesized by stirring MXenes and graphene oxide 

colloidal solutions with Eosin Y, followed by heating at 

70 °C under N protection. Additionally, CdS/MXene 

(Ti3C2) composites are fabricated using electrostatic self-

assembly, where CdS nanowires are uniformly dispersed 

on MXene nanosheets via electrostatic attraction [29]. 

The hydrothermal and solvothermal processes are 

also extensively used to obtain MXene-based compo-

sites. The solvothermal method is applied in an in situ 

metal-organic-framework-derived approach to developing 

Co-Co layered double hydroxide/Ti3C2Tx nanosheets 

with excellent photocatalytic properties [30]. Etching 

techniques are critical for MXene fabrication, utilizing 

various etchants, namely hydrogen fluoride (HF), lithium 

fluoride (LiF) with HF, and zinc chloride (ZnCl2). The  
 

final MXene properties depend on etchant concentration 

and etching duration [31]. For instance, the replacement 

reaction method is used to synthesize Zn-based MAX 

and Cl-terminated MXenes with ZnCl2 Lewis acidic 

molten salt, however, challenges, namely high tempe-

ratures, crystallinity control, and energy consumption, 

must be addressed [32]. Additionally, chemical vapor 

deposition (CVD) techniques are explored for precise 

MXene film fabrication. 2D ultrathin α-Mo2C crystals 

with a large surface area, achieving high-quality, defect-

free structures, are successfully synthesized using CVD 

[33]. Similarly, the one-step copper-catalyzed CVD 

technique enables the in situ synthesis of 2D Mo2C on 

graphene. Despite offering high purity and minimal 

defects, the CVD methods often suffer from low yields 

and complex processing, highlighting the need for further 

advancements [34]. 
 

3. Application of 2D MXene composites for 

degradation of organic dyes 

3.1. Methylene Orange 

Methylene Orange (MO), an organic dye discovered in 

1876, was initially recognized for its bicolored nature by 

Griess [35]. As a sulfonated azo dye, MO is highly stable 

and non-biodegradable under ambient conditions, posing 

a significant environmental hazard. It is extensively 

utilized in industries, namely in food, cosmetics, textiles, 

leather, pharmaceuticals, and plastics [36]. The large-

scale discharge of MO into water bodies disrupts aquatic 

ecosystems by lowering oxygen levels and hindering 

photocatalytic degradation. Exposure to MO-contami-

nated water can lead to respiratory diseases, vomiting, 

diarrhea, and skin irritation [37]. Different studies are 

devoted to MO degradation via utilizing efficient 

MXene-based photocatalysts.  

Peng et al. [38] synthesized a (111) TiO2/Ti3C2 

photocatalyst via the hydrothermal method to degrade 

MO dye. Pure TiO2 had limited photocatalytic efficiency 

due to a low specific surface area (SSA) and interlayer 

spacing. However, an incorporated Ti3C2 enhanced these 

properties. This photocatalyst possessed 98.67% MO 

degradation in 2.3 hours, representing MXene’s potential. 

Moreover, Peng et al. [39] synthesized a 2D MXene-

based TiO2/Ti3C2 nanocomposite using the hydrothermal 

partial oxidation method for MO degradation. 

Transmission electron microscopy and density functional 

theory confirmed its smooth interface and minimal 

defects. The photocatalyst achieved 97.4% degradation, 

with only a 4.9% decline after four cycles, demonstrating 

excellent recyclability. Jiang et al. [40] synthesized  

a C-TiO2/Bi4NbO8Cl nanocomposite via calcination for 

MO degradation in water and wastewater. Material 

characterizations confirmed their dissimilar properties. 

The photocatalyst gained 44% MO degradation in 3 hours, 

offering a simple approach to designing functional 

nanomaterials for water purification. Chen et al. [41] 

synthesized a TiO2/Ti3C2Tx nanocomposite using the 

solvothermal method, with its structure and photo-

catalytic activity influenced by temperature (333–493 K).  
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Under a 500 W Hg lamp illumination, it attained 92% 

MO degradation in 50 min at 473 K, demonstrating 

efficient charge transfer and enhanced photocatalytic 

performance for organic pollutant removal. 

3.2. Congo Red  

According to the literature, Paul Bottiger first discovered 

Congo Red (CR) in 1885, marking a significant advance-

ment in dye development [42]. CR dyes are widely used 

in textiles, pharmaceuticals, and the paper industries. 

However, their presence in industrial effluents affects soil 

properties and plant health and poses serious risks to human 

health [43]. In this regard, Iqbal et al. [44] synthesized 

Bi0.9La0.1FeO3/Ti3C2 and Bi0.9La0.1Fe0.95Mn0.05O3/Ti3C2 

photocatalysts using a cost-effective double solvent sol-

gel method for efficient CR degradation in water and 

wastewater. These catalysts exhibited remarkable 

photodegradation efficiencies of 92% and 93% in the 

dark within 30 min, attributed to their large specific 

surface area (39 m²/g), enhancing active sites and 

photocatalytic performance. Tariq et al. [45] developed a 

BiFeO3/Ti3C2 nanocomposite photocatalyst using the 

double solvent solvothermal method for efficient CR 

degradation in water (Fig. 2). The prepared photocatalyst 

achieved nearly 100% CR removal under visible light 

irradiation in 2 hours, demonstrating cost-effectiveness 

and environmental sustainability. Sajid et al. [46] 

synthesized a BiVO4/Ti3C2 nanocomposite photocatalyst 

using a cost-effective hydrothermal method for CR dye 

degradation. It achieved 99.5% degradation under visible 

light irradiation in 1 hour. It remained highly efficient 

after three cycles, making it commercially doable. 

3.3. Rhodamine B  

Rhodamine B (RhB) is widely used in the cotton industry 

as a textile dye due to its high durability and resistance to 

biodegradation. The European Food Safety Authority has 

classified it as genotoxic and carcinogenic [47]. While 

nations like China and the EU have banned its use in 

food [48], it remains prevalent in biotechnology, textiles, 

and as a water tracer. RhB is one of the most hazardous 

dyes in wastewater, posing serious risks to human and 

animal health. Its applications extend to dye lasers, stamp 

pad inks, and paintings [49]. The following section 

explores the degradation potential of MXene-based 

photocatalysts for environmental purification from RhB. 

Wu et al. [50] employed the one-step in-situ 

calcination method to synthesize a TiO2/g–C3N4 photo-

catalyst from MXene Ti3C2 for RhB degradation under 

visible light irradiation. The photocatalyst achieved 

98.0% RhB degradation under a 300 W Xenon lamp 

illumination in 70 min. Its efficiency surpassed pure 

TiO2, g-C3N4, and graphene due to its large surface area 

(26.4 m²/g) and pore volume (0.135 cm³/g), which 

enhanced photon absorption and facilitated photodegra-

dation. The photocatalyst’s high surface functionality 

contributed to its superior performance. Cui et al. [51] 

synthesized ultrathin Bi2WO6/Nb2CTx hybrid nanosheets 

via the hydrothermal process for RhB photodegradation.  

 

 

Fig. 2. Nanohybrid system composed of bismuth ferrite 
nanoparticles BiFeO3 (BFO) with 2D Ti3C2 MXene sheets for 
enhanced photocatalytic activity, fabricated using the double-
solvent solvothermal method: (a, b) Exfoliated MXene sheets, 
(c–f) BiFeO3/MXene nanohybrids, and (g, h) BiFeO3/MXene 
nanohybrids. Reprinted with permission from Ref. [45]. 
Copyright 2019, American Chemical Society. 

 
 

Bi2WO6/Nb2CTx exhibited superior photocatalytic 
efficiency of 99.8%, compared to Bi2WO6, due to 
enhanced e-h separation, achieving a rate constant of 
0.072 min

–1
, which was 2.8 times higher than that for 

pure Bi2WO6. Ding et al. [52] successfully fabricated a 
2D TiO2@Ti3C2/g-C3N4 photocatalyst by exploiting the 
ultrasonic-assisted calcination procedure. This method 
increased the interfacial structure and electronic proper-
ties of the prepared material. The active C3N4 is involved 
in e-h pair generation, while Ti3C2 and TiO2 facilitate the 
charge transfer. This synergy effectively boosted the RhB 
degradation by 1.33 times, respectively. Moreover, Fig. 3 
illustrates the charge transfer and e-h separation mecha-
nism in TiO2@Ti3C2/g-C3N4 used for RhB degradation. 
Tran et al. [53] developed safflower-shaped TiO2/Ti3C2 
heterostructures from 2D Ti3C2 MXene via hydrothermal, 
ion exchange, and calcination for RhB photodegradation. 
The composite reached 95% efficiency in 1 hour due  
to its porous structure. Characterization techniques 
confirmed its enhanced photocatalytic activity compared 
to pure MXene. Diao et al. [54] synthesized an efficient 
g-C3N4/Ti3C2/TiO2 photocatalyst via CVD and in situ 
growth for RhB degradation. Its uniform structure was  
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demonstrated. The photocatalyst showed 85.1% degrada-

tion in 3 hours, achieving three times higher efficiency than 

pristine materials, with excellent stability and reusability. 

3.4. Methylene Blue  

Methylene Blue (MB) was first discovered by Caro in 
1876 in England [55]. As a phenothiazine compound, its 
chemical name is tetramethylthionine chloride, appearing 
deep blue in its oxidized state and colorless when 
reduced to leuco MB. It dissolves in water and organic 
solvents and was historically used as an antibacterial and 
antiseptic dye in medicine [56]. However, MB contami-
nation in water reduces oxygen levels, threatening 
aquatic life and human health.  

Peng et al. [38] used a hydrothermal synthesis to 
fabricate a (111) TiO2/Ti3C2 photocatalyst for MB 
degradation. Pure TiO2 exhibited limited photocatalytic 
efficiency due to low SSA and interlayer spacing, but 
combining it with Ti3C2 improved these properties. The 
developed photocatalyst showed 85% MB degradation in 
2.3 hours, highlighting MXene’s potential in advanced 
photocatalyst design. Cui et al. [51] synthesized ultrathin 
Bi2WO6/Nb2CTx hybrid nanosheets via the hydrothermal 
method for RhB, MB, and TC-HCl degradation. Bi2WO6 
revealed enhanced photocatalytic efficiency when 
combined with Nb2CTX, achieving 92.7% MB de-
gradation. This study highlights Nb2CTx as a promising 
co-catalyst for improved photodegradation performance. 
In 2022, Qu et al. [57] employed HF etching to 
 

 

 
 

synthesize an ML-Ti3C2 MXene-based photocatalyst 
from Ti3AlC2. The ML-Ti3C2(OH)2 photocatalyst 
demonstrated 81.2% MB degradation within 30 min in 
the dark due to its high SSA, interlayer spacing, and 
active sites, offering an efficient method for organic 
pollutant removal. In 2022, Nasri et al. [58] synthesized 
an MXene/g-C3N4 heterostructure photocatalyst using the 
wet impregnation method. Under a 500 W halogen lamp 
illumination, the 1 wt.% MXene/g-C3N4 photocatalyst 
showed 69.4% degradation in 3 hours, attributed to 
enhanced BET SSA, crystallinity, and reduced band gap. 
The study revealed that electrons played a crucial role in 
improving photocatalytic performance by preventing 
charge recombination, thereby increasing activity. This 
MXene contributed significantly by facilitating charge 
transfer and segregation, accelerating dye degradation 
under solar irradiation. In 2022, Liu et al. [59] developed 
a Ti3C2Tx-derived oxide nanocomposite photocatalyst 
through prolonged oxidation of Ti3C2Tx at a controlled 
temperature. The synthesized 2D MXene-based photo-
catalyst exhibited an exceptional MB degradation 
efficiency of nearly 90% within 1 hour under visible light 
irradiation. This superior performance was ascribed to its 
high SSA, increased band gap energy, improved 
interlayer spacing, and remarkable thermal, optical, and 
electrical properties. Fig. 3 describes the general 
mechanism of exploitation of 2D MXenes-based 
composites for degradation of organic dyes under UV 
radiation, yielding the final product of H2O and CO2. 

 

 

Fig. 3. The proposed degradation mechanism of organic dyes under UV-light irradiation using 2D MXene composites. 
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4. Conclusions and future perspectives 
 

MXene-based nanocomposites emerged as highly 
efficient photocatalysts for degrading various organic 
pollutants, including dyes like Methylene Orange (MO), 

Congo Red (CR), Rhodamine B (RhB), and Methylene 
Blue (MB). Several fabrication techniques, namely 
electrostatic self-assembly, hydrothermal and solvo-
thermal synthesis, calcination, and mechanical/ultrasonic 

mixing, were explored to enhance their photocatalytic 
efficiency. Among these, the hydrothermal and solvo-
thermal processes demonstrated significant improve-

ments in charge separation and pollutant adsorption. 
Researchers have successfully integrated MXenes with 
TiO2, Bi2WO6, and g-C3N4, resulting in increased surface 

area, reduced band gap, and higher electron mobility. 
Recent studies have reported remarkable 

degradation efficiencies, with Ti3C2Tx-derived nano-
composites achieving up to 98% dye removal under 

visible light irradiation. Despite these advancements, 
there are still challenges in large-scale production, 
stability, and reusability. Future research should focus on 

optimizing synthesis protocols, enhancing structural sta-
bility, and integrating MXenes with plasmonic materials 
or emerging technologies like AI-driven catalyst design. 

Additionally, exploring MXene-based heterostructures 
with multifunctional capabilities can further improve 
degradation efficiency and sustainability. Advancing 
MXene photocatalysts for practical waste-water treat-

ment applications will contribute significantly to environ-
mental remediation and sustainable water purification 
systems, ultimately addressing global pollution 

challenges through innovative nanomaterial engineering. 
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Двовимірні фотокаталізатори з інтегрованими максенами: новий рубіж у сталій деградації органічних 

барвників 

J.A. Buledi, S. Golovynskyi, В.M. Кравченко, J. Qu, I. Golovynska, A.R. Solangi 

Анотація. Двовимірні (2D) композити на основі максенів, клас графеноподібних карбідів та нітридів 

перехідних металів, є чудовими матеріалами для фотокаталітичного застосування завдяки своїм 

перспективним характеристикам, таким як налаштовувані функціональні можливості та велика площа 

поверхні. Для виготовлення фотокаталізаторів на основі максенів використовуються різні шляхи синтезу, а 

саме: гідротермальний, сольвотермічний, електростатична самозбірка та хімічне осадження з парової фази. 

Сольвотермічні та гідротермальні методи синтезу підвищують кристалічність та прискорюють перенесення 

заряду, запобігаючи рекомбінації та підвищуючи фотокаталітичну активність. Крім того, методи травлення 

впливають на фізико-хімічні властивості максенів, змінюючи ефективність видалення забруднюючих речовин. 

Композити максенів використовуються як перспективні фотокаталізатори для деградації органічних 

барвників, включаючи конго червоний, метиленовий оранжевий, родамін B та метиленовий синій. Такі 

композити максенів, як TiO2/Ti3C2, Bi2WO6/Nb2CTx та MXene/g-C3N4, демонструють чудову фотокаталітичну 

ефективність, досягаючи швидкості деградації понад 90% під впливом видимого світла. Однак, такі проблеми, 

як масштабованість, енергоспоживання та структурна стабільність, потребують подальшого дослідження для 

оптимізації їхнього великомасштабного застосування. 

Ключові слова: композити максенів, 2D нанокомпозити, відновлення навколишнього середовища, органічні 

забруднювачі, забруднення навколишнього середовища. 
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