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Hetero- and low-dimensional structures
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Abstract. The dielectric properties in the frequency range of 10 to 10° Hz and at the
temperatures of 30 to 60 °C of 0.4 mm thick color catcher sheets (nonwoven textile with
ion exchange properties) both in the native state and with bound biochar were investigated
using the oscilloscope method. The sample dimensions were 1x1 cm. To assess the
influence of the sample thickness, samples with several (maximum 4) layers were used
together with one-layer textile. It was shown that, unlike the data obtained by us earlier, the
dielectric properties of the nonwoven textile without additives are caused by near-electrode
processes. It was demonstrated as well that in this case, the dispersion of the frequency
dependences of inverse resistance (analog of the imaginary component of complex
dielectric permittivity) with respect to capacitance (analog of the real component of
complex dielectric permittivity) corresponds to the Debye dispersion. Using the obtained
results, the dielectric relaxation time (2.4-107 s) and the thickness of the near-electrode
layer (1.5 um) were estimated. Measurements at different temperatures and with several
layers of the native textile demonstrated that the parameters of this relaxation process do
not depend on both the sample thickness and the temperature. It was found that the sample
resistance decreased by 3 orders of magnitude on average in the presence of biochar bound
to the textile. In this case, the temperature dependence of the inverse resistance (analog of
conductivity for uniform and continuous bodies) obeyed the Arrhenius law. The activation
energy of the temperature dependence of the inverse resistance was 0.37 eV, which is
greater than the similar value obtained in our work of 2024.
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1. Introduction interesting applications in (bio)analytical chemistry. Both

native and modified sheets can be used as low-cost,

It was shown in [1] that specific types of color catcher planar optical sensors for analyzing various dyes and as a
sheets (CCS), which are regularly used during washing to carrier for immobilizing specific affinity ligands.
prevent color runs, could be an interesting object for Changes of the sensor color can be observed by
research. The CCS, which usually represent nonwoven spectrophotometry or using an image analysis [2].
textile with ion exchange properties, have found Recently, CCS were also employed for interaction with
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inorganic particles. The CCS with bound montmoril-
lonite derivatives [3] or Prussion blue particles [4]
enabled efficient phenol polymerization or methylene
blue decolorization due to peroxidase-like activity of the
bound particulate catalysts. Moreover, other methods,
including dielectric spectroscopy, can be efficiently
employed to study the effect of the bound particles on
CCS [5-18]. Therefore, the purpose of this work was to
study the dielectric properties of a specific color catcher
(which is a typical nonwoven textile material [2]) in the
native state and after binding biochar particles, using a
different method as compared to [1], and to compare the
color catcher characteristics with the respective data
obtained in [1].

2. Instruments and materials

Color catcher sheets (Iberia Protect, AC Marca Brands,
Spain) were employed as a model nonwoven textile.
Biochar-4073 (BCH-4073) produced by Biouhel.cz
(Czech Republic) was prepared by pyrolysis of soft wood
at 750 °C for 40 min. The biochar was ground using a knife
laboratory mixer (Microtron Kinematika 550, Kinematica
GmbH, Germany) before use. Then the samples were
sieved using 100 pum sieves. A fraction of the biochar
below 100 pm was used for modifying the CCS squares
(1x1 cm in size) by immersing them in excess of BCH
suspension in methanol (10 mg/mL) overnight under
mixing. The modified CCS squares with the bound BCH
were subsequently dried at room temperature.

The dielectric characteristics of the samples in the
frequency range of 10 to 7-10° Hz and at the
temperatures of 30 to 60 °C were measured using the
oscilloscope method [19]. For the studies, we used
sandwich-type samples with a guard electrode. The area
of the measuring electrode was 1 cm®.

All the studied samples had the same geometric
shape (a rectangular parallelepiped) with a square base
having the side length of 1 cm and the height of 0.4 mm.
To check the thickness dependence, the samples with
several layers of textile (maximum 4 layers) were
prepared.

To conduct experimental studies similar to [1],
a G3-112 generator was used. A time-varying sinusoidal
voltage with the amplitude of 4 V was supplied from the
generator to the sample. The sample was connected in
series with a resistor magazine, which served as a load
resistance for the S1-93 oscilloscope. The voltage from
the load resistance was supplied to the Y coordinate of
the oscilloscope. The voltage was supplied directly from
the generator to the X coordinate. For most frequencies,
the oscillograms at voltage rises and falls differed
(the oscillograms had a shape close to an ellipse).
Specifically, the voltage on the load resistance during the
rise of the signal from the generator U, was greater than
that the voltage during the fall U;. Using the analysis
conducted in [1], the resistance and capacitance values
were calculated based on the obtained oscillograms using
the following expressions.

The sample resistance was calculated as

R=2RHL, (1)
Uu,+U,

where R, is the value of the load resistance and U, is the
voltage, at which the capacitance and resistance were
calculated, respectively.

The sample capacitance was calculated by the
following expression:

U,-U,

C=——"0_=s
4uf JUZ -U?

2

where f'is the frequency of the measuring signal and Uj is
the amplitude value of the measuring signal voltage,
respectively.

In our research, Uy=4 Vand U, =24 V.

The sample temperature was maintained using a
thermostat and stabilization unit developed by us. The
deviation from the set temperature value did not exceed
0.1 °C.

3. Experimental results and analysis
3.1. Dielectric properties of native nonwoven textile

Dielectric properties of uniform in bulk substances are
characterized based on the frequency dependences of the
components of the dielectric permittivity &' and &”.
Similar to [1], the materials studied in the present work
were not continuous. Therefore, their dielectric properties
could not be characterized based on the frequency
dependences of ¢’ and €.

In this work (except for individual studies), we
studied the samples of the same geometric dimensions.

The components of the complex dielectric
permittivity €’ and & have the following relations to the
sample capacitance and resistance [20]:

g = . (3)
€05

and

g4 4)
21 o /SR

where d is the sample thickness, S is its area, and f'is the
frequency of the measuring signal, respectively.

For textiles with non-continuous and non-uniform
properties (in presence of additives), analysis of their
dielectric properties can be carried out by considering the
experimentally measured resistance and capacitance
values.

At the initial stage, it was important to find out how
the values of R and C of the native textile without
additives would depend on the frequency (as was done in
[1] or in a different way).

Fig. 1 shows a frequency dependence of R for one
layer of native textile in the frequency range of 107 to
10° Hz at the temperature of 30 °C on a bilogarithmic
scale.
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Fig. 1. Frequency dependence of the resistance of 0.4 mm thick
one layer of nonwoven textile at the temperature of 30 °C on a
bilogarithmic scale.

As follows from the analysis, the data for the
textiles studied in this work significantly differ from the
data obtained in the work [1]. Similar in nature depen-
dences were obtained for other sample temperatures.
Moreover, it was found that the temperature value
(in the range of 30 to 60 °C) did not affect the resistance
value.

Fig. 2 shows the frequency dependence of the
capacitance for one layer of native nonwoven textile in
the frequency range of 10 to 10° Hz at the temperature
of 30 °C. It can be concluded based on the analysis of the
obtained results that in addition to the significant
frequency dependence of the resistance in the studied
frequency range, the frequency dependence of the
capacitance also significantly differ from the respective
data reported in [1].

In dielectric spectroscopy, the type of the frequency
dependence of ¢’ and &" is determined based on the
analysis of the dependences €'(g"), i.e. the Cole—Cole
diagrams. For the same geometric dimensions of the non-
uniform samples, the equivalent of €’ is the capacitance C,
and the equivalent of €” is 1/® R (here, ® =2mn f is the
cyclic frequency).

Fig. 3 shows the dependence 1/ R(C) for
nonwoven textile at the temperature of 30 °C calculated
using the data presented in Figs. 1 and 2. As can be seen
from Fig. 3, the main part of this dependence can be
described by a semicircle.

For uniform and continuous bodies, this type of
dispersion corresponds to the Debye dispersion with one
relaxation time and is described by the following
relation [20]:

g =g+ e (5)
1+iot

where & is the complex permittivity, & and &, are

the permittivity values at the frequencies f=0 and

f=oo, respectively, and t is the dielectric relaxation

time.
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Fig. 2. Frequency dependence of the capacitance of 0.4 mm
thick one layer of native nonwoven textile at the temperature of
30 °C on a bilogarithmic scale.

We believe that for non-uniform and non-
continuous bodies (such as the textile under study),
analysis of the obtained data may be carried out using the
following relation:

R (©)
1+iot

where C” is the complex capacitance and C; and C,, are

the capacitance values at the frequencies /=0 and f'= oo,

respectively.

Calculations by the expression (6) provided t =
24107 s.

The values of the samples capacitance in the studied
range (10°-10° Hz) obtained by us significantly exceed
the capacitance of the samples at a uniform distribution
of an electric field in the textile. It may be assumed
therefore that the electric field in the textile is distributed
non-uniformly, similar to, e.g., a liquid crystal case.
Namely, the electric field is mainly distributed within the
near-electrode areas. Based on this assumption, the
thickness of the near-electrode areas, where the electric
field is predominantly distributed, can be estimated.

2.0x10™" 4.0x10™" 6.0x10"

b

Fig. 3. 1/® R(C) calculated using the data presented in Figs. 1
and 2.
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Fig. 4. Frequency dependences of the inverse resistance 1/R for
one layer of nonwoven textile with bound biochar at 30 °C (1)
and 60 °C (2).

For liquids and in particular liquid crystals, we
obtained the following expression to estimate the
thickness of the near-electrode area W [21]:

de
Ww=—= @)
2g
For the studied textiles, the expression (7)
transforms into
dcC
W=—= 8
2C, ®
Calculations by the expression (8) provided
W=1.5 pm.

3.2. Dielectric properties of nonwoven textile with
bound biochar

Fig. 4 shows frequency dependences of the inverse
resistance (analog of conductivity for a uniform and
continuous medium) for one layer of textile with bound
biochar at the temperatures of 30 °C (curve /) and 60 °C
(curve 2).

It can be concluded from the data presented in
Fig. 4 that such dependences significantly differ from
those for the textile without additives. First, the
resistance of the textile is significantly reduced. Taking
into account that the resistance of the textile without
additive depends on the frequency, one may assume that
introduction of the additive into the textile leads to a
decrease in the R value by approximately 1000 times on
average.

Second, unlike the native textile (without bound
biochar) case, the resistance of the textile with bound
biochar is practically independent of frequency (except
for a small part at /> 10° Hz).

Third, the dependence of the resistance of the textile
with bound biochar changes with temperature. Such
temperature dependences for different textile thicknesses

due to use of several layers are shown in Fig. 5. In this
figure, the dependences of 1/R (analog of electrical
conductivity for uniform and homogeneous media) on
temperature are presented in Arrhenius coordinates. The
value of 1/R increases with the temperature, which is
characteristic of the mechanism of conductivity in
semiconductors.

The temperature dependence of the -electrical
conductivity of the nonwoven textile with bound biochar
can be described by the following expression:

AE
1/R bexp( ij , ©)
where b is a constant, k = 1.38-107% J/K is the Boltzmann
constant, and T is the absolute temperature, respectively.

The most important parameter included in the
expression (6) is the activation energy of the value 1/R
(analog to conductivity for uniform bodies). The same
slope of the straight lines in Fig. 5 indicates that the
activation energy of 1/R does not depend on the number
of layers. Fitting the experimental results presented in
Fig. 5 with the expressions (9), the activation energy of
the temperature dependence of 1/R was found to be
0.37 eV.

This value of the activation energy of 1/R is greater
than that obtained in [1] (0.13 eV), where the electrical
properties of a different type of CCS nonwoven textile
with the same biochar additive were studied. This
confirms once again the conclusions made earlier that,
unlike the textile is made using threads, the properties of
the nonwoven materials can be changed much more by
introducing various types of additives. Hence, even minor
modifications in the textile manufacturing technology
and the properties of the additives may significantly
impact the properties of the nonwoven material.
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Fig. 5. Temperature dependences of 1/R of textile with bound
biochar with different numbers of layers: 1 (1), 2 (2), 3 (3), and
4 (4). The thickness of one layer is 0.4 um. The sample area is
1 cm?.
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4. Conclusions

1. It has been shown that a change in the technology
of manufacturing nonwoven textile can significantly
affect its electrophysical properties. While for the
nonwoven textile studied in [1], the charge carrier
transport was jump-like in the sample bulk, in the same-
type materials but with slightly different characteristics,
studied in this work, the charge carrier transport was
significantly influenced by near-electrode phenomena.
The influence of the near-electrode processes in the
nonwoven textile without additives leads to that the
electric field is mainly redistributed in the near-electrode
layers.

2. Analysis of the dielectric properties of the studied
textiles, which are non-uniform media, was carried out
considering the frequency dependences of the resistance
R and capacitance C as well as the dependence 1/® R(C)
(analog to the Cole—Cole diagrams for uniform and
single-component media).

3. It has been shown that the Cole—Cole diagrams
for the studied textile without additives have a semicircle
shape, which is characteristic of the Debye dispersion
with a single relaxation time. The relaxation time
(2.4-107 s) and the thickness of the near-electrode layer,
in which the relaxation process occurs (1.5 pum), have
been estimated.

4. It has been shown that the characteristics of the
near-electrode processes do not depend on the tempera-
ture in the range of 30 °C to 60 °C and the sample
thickness (0.4 to 1.6 mm, i.e. 1 to 4 textile layers).

5. In the presence of biochar bound to the textile,
the conductivity of the latter increases by three orders of
magnitude on average and does not depend on the
frequency except for the frequencies above 10° Hz.

6. It has been shown that the temperature depen-
dence of 1/R (analog of conductivity for non-uniform
media) corresponds to the Arrhenius law in the frequency
range where it does not depend on the value of f.

7. It has been found that the activation energy of the
temperature dependence of the conductivity of the
studied samples does not depend on the number of textile
layers and equals as 0.37 eV. This value is significantly
higher than the respective value obtained in [1].
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BB nonaBaHHs 0ioBYrijuisi Ha JJieIeKTPUYHI BJIACTUBOCTI KOJIHOPONOTINHAILHUX JIMCTIB

O.B. KoBaibuyk, J. Prochazkova, T.M. KoBaasuyk, JI.B. Bosox, I.B. OueiinikoBa, J. Mariano, 1. Safarik,
P. Kop¢ansky

Amnotauis. V mianasoni wacror 10°-10° 'y Ta Temmeparyp 30-60 °C 3a JOIOMOTOR OCHHIOrpadidHOro MeToxy
JIOCHI/DKEHO JIENICKTPUYH]I BIIACTUBOCTI KOJBOPOIOIIMHAIBHUX JIMCTIB (HETKAHOTO TEKCTHIIO 3 10HOOOMIHHMMH
BJIACTHBOCTSIMH) TOBIIMHOIO 0,4 MM, SK y BUXIIHOMY CTaHi, Tak i 3 JoAaHuM OioByriuumsiM. Po3mipu 3paskiB
cranoBmwiIM 1x1 cM. [In1s1 OiHKM BIUIMBY TOBIIMHU 3pa3ka, KPIM OJHOTO IIapy TEKCTHIII0, BAKOPUCTOBYBAJIMCS 3Pa3KH
3 KUIbKOMa Inapamu (MakcHMallbHa KUIbKiCTh — 4 mmiapu). [lokaszaHo, 110, Ha BiIMIHY Bill JaHUX, OTPUMaHHUX HaMH
pamime, mielIeKTpUYHI BIACTHBOCTI HETKAHOTO TEKCTHIIO 0e3 J00aBOK 3yMOBIIEHI NMPHENEKTPOJIHUMH IPOIIECaMH.
[MTokazaHo, 0 B IFOMY BUIIAJKY AUCIIEPCIS YACTOTHUX 3aJIEKHOCTEH BETMYNHH, 0OEpHEHOT /10 oropy (aHaJIor YsIBHOT
CKJIaZIOBOi KOMIUIEKCHOI JIEIEKTPUIHOT TPOHUKHOCTI), BITHOCHO €MHOCTI (aHAJOT MIHCHOI CKIaI0BOT KOMITJIEKCHOT
IICIIEKTPUYHOI MPOHUKHOCTI) BiamoBimae aucrepceii [Jebas. BuxopucroByroun oTpuMaHi gaHi, Oyllo OIIHEHO Yac
nienextpuunoi penaxcanii (2,410~ ¢) Ta ToBMHY npuenexTpoaroro mapy (1,5 Mkm). [Ipi BEMIPIOBAHHSX 3a Pi3HHX
TEMIIEpaTyp Ta KUTBKOX MIapiB BHXIIHOTO TEKCTHIIO OyJO ITOKa3aHO, IO MapamMeTpu IbOTO TMPOIECY periakcamii He
3aJIeKaTh Hi BiJ TOBIIMHHU 3pa3ka, Hi BiJ TeMreparypu. byno BHsBICHO, 110 3a HasIBHOCTI OIOBYTiUIsA, JTOJAHOTO 10
TEKCTWJIA, OMIp 3pa3KiB 3MEHINYETbCS B CEPEIHBOMY Ha 3 mopsiikd. byno moka3aHo, IO B LbOMY BHIAAKY
TeMIIepaTypHa 3aJIe)KHICTh 3HaYE€HHsI, 00EPHEHOT0 JI0 ONopy (aHaJIOT MPOBIIHOCTI I OAHOPIAHUX Ta CYLUIBHUX TiN),
BiAMOBiNae 3akoHy AppeHiyca. Byno BHSBICHO, 10 €HEpPris aKTHBAIil TeMIIEPaTypHOI 3ale)KHOCTI 3HAYCHHS,
obepHeHoTO 10 onopy, ctanoBuTh 0,37 eB, 1m0 Oiblne 3a aHATOriYHE 3HAYCHHS, OTPUMaHe B poOOTi, OmyOIikoBaHii y
2024 porri.

KoaiouoBi cioBa: KoNbOPONOITIMHANBHI JIMCTH, HETKAHWH TEKCTHIIb, JIEIEKTPUYHI BIACTHBOCTI, IPHEIEKTPOAHI
MIPOIECH, THYYKi CHCTeMH, AeopMartis.
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