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Abstract. This paper recovers implicit quiescent perturbed optical solitons that emerge 

from the nonlinear Schrödinger equation with Hamiltonian perturbation terms having 

arbitrary intensity. The model is considered in the context of generalized temporal 
evolution and nonlinear chromatic dispersion. Eighteen forms of self-phase modulation 

structures are taken into account. The integration is carried out by the implementation of 

Lie symmetry. The parameter constraints that guarantee the existence of these solitons are 

also presented. 
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1. Introduction

The dynamics of quiescent optical solitons is one of the 

non-essential features in optoelectronics. This unwanted 

feature is detrimental to the soliton transmission techno-

logy and is therefore a telecommunication engineer’s 

nightmare. This fallout happens when the delicate ba-

lance between dispersion and nonlinearity is lost during 

soliton transmission across intercontinental distances 

under the ocean or underground. Therefore, the balance 

must be maintained throughout all communication. One 

of the sources of this fallout is that chromatic dispersion 

(CD) is rendered to be nonlinear as opposed to being 

linear when the solitons stay mobile. The rough handling 

of fibers, as well as fiber bends and twists, lead to the 

pulses propagating through the fiber getting stalled, 

which leads to the formation of these quiescent solitons. 

Various mathematical approaches have been 

implemented in the past to recover quiescent optical 

solitons from a wide range of models in optical fibers, 

magneto-optic waveguides, optical couplers and others 

[1–15]. However, this paper addresses the formation of 

these quiescent optical solitons for the governing 

nonlinear Schrödinger’s equation (NLSE) that is 
considered with a few Hamiltonian perturbation terms, 

which appear with arbitrary intensity. The model is 

addressed with eighteen forms of self-phase modulation 

(SPM) structure that appear in quantum optics in the 

context of optical fibers. The temporal evolution is also 

taken to be in its generalized form; thus, the case of 

linear temporal evolution collapses to its special case that 

was already addressed earlier [1]. The unperturbed 

version of the model was addressed earlier for five forms 

of SPM structure, both with linear temporal evolution as 

well as generalized temporal evolution. This paper is thus 
an extension/generalization of the previously reported 

works. The integration algorithm, which is adopted in the 

paper, is Lie symmetry as in previous works. The details 

of the analysis and the results are presented and derived 

after a succinct introduction to the model. 
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1.1. Governing model 

The dimensionless form of the NLSE with the 

generalized temporal evolution and nonlinear CD and the 

non–Kerr law of SPM is structured as:  

  (1) 

In equation (1), the dependent variable q(x, t) stands 

for the wave amplitude, while the independent variables 

x and t represent the spatial and temporal coordinates, 

respectively. The first term represents temporal evolution 

where l is the generalized temporal evolution parameter 

and . The second term is the nonlinear CD, 

where n represents the parameter of nonlinearity for CD. 

If n = 0 together with l = 1, CD collapses to its linear 

version, in which case, the solitons would be mobile. In 

the third term, F represents the generalized functional 

form of the non-Ker law of SPM. On the right-hand side, 

the perturbation terms represent self-steepening effect 
and self-frequency shift whose coefficients are given by λ 

and θj for j =1, 2, respectively. Here, the parameter m 

represents arbitrary intensity. For m = 0, one recovers the 

actual intensity of light. 

2. Mathematical analysis

To analyze equation (1) the following structure of the 

quiescent solitons is selected: 

  (2) 

where ω is the wave number and ϕ represents the 

amplitude form of the wave. Substituting into (1) and 

decomposing into real and imaginary parts lead to the 

equations  

and 

  (4) 

respectively. 

Equation (4) serves as the parameter constraints 

between the perturbation terms, the generalized temporal 

evolution parameter and the arbitrary intensity parameter. 

Eq. (3) is the ordinary differential equation (ODE) that is 

going to be addressed for eighteen different structures of 

SPM, denoted by the functional F, and the results for the 

quiescent solitons will be derived and exhibited in the 

subsequent section. These results will be with additional 
parameter constraints that will naturally emerge for 

various forms of SPM structures. 

3. Application to several SPM structures

This section will carry out the integration of ODE from 

the previous section, given by (3), for eighteen different 
forms of SPM structures. The Lie symmetry analysis will 

be implemented for each of these models, and the 

established quiescent solitons will be presented. 

3.1. Kerr law 

For Kerr law of nonlinearity, the functional F takes the 

form:  

  (5) 

where b is a non-zero constant and the governing model 

therefore takes the form:  

  (6) 

while the ODE (3) simplifies to 

The ODE (7), along with the constraint condition 

(4), permits a translational Lie symmetry /x that 

integrates (7) to  

  (8) 

where the Gauss hypergeometric function is defined as 

  (9) 

with the Pochhammer symbol being 

(10) 

The condition that guarantees convergence of the 

hypergeometric series is  

(11) 

which for (9) implies 

(12) 

Finally (9) also compels the parameter constraint: 

(13) 

3.2. Power law 

For power-law of nonlinearity the functional F is taken to 

be  

(14) 

for non-zero constant b and therefore the governing 

model takes the form: 

while the ODE (3) simplifies to 
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The ODE (16) along with the constraint condition 

(4) permits a translational Lie symmetry /x that 

integrates (16) to reveal the implicit quiescent optical 

soliton as 

(17) 

The condition given by (11) for the Gauss hyper-
geometric function to converge translates to 

(18) 

while the constraint (13) still holds. 

3.3. Parabolic (cubic-quintic) law 

For parabolic law of nonlinearity, the functional F takes 

the form:  

(19) 

where bj for j = 1, 2 are nonzero constants. Therefore, the 

governing model takes the form:  

(20) 

while the ODE (3) simplifies to 

The ODE (7), along with the constraint condition 

(4), permits a translational Lie symmetry /x that 

integrates (7) to  

(22) 

where 

(23) 

and 

(24) 

Here, the Appell hypergeometric function of two 

variables is defined by the infinite series:  

which is convergent inside the region 

(26) 

which in this case, (22) implies 

(27) 

One would also require from (27) 

(28) 

for the implicit quiescent solitons to exist. 

3.4. Dual-power law 

For dual-power law, the SPM is structured as 

(29) 

for constants bj with j = 1, 2. In this case the perturbed 

NLSE is 

while the ODE (3) simplifies to 

(31) 

The translational Lie symmetry leads to the integral 

of the ODE to give the implicit quiescent optical solitons 

in quadratures as 

(32) 

where 

(33) 

and 

(34) 

The criteria for the quiescent solitons to exist is given by  

(35) 

3.5. Polynomial (cubic-quintic-septic) law 

For polynomial law of SPM, one writes the SPM 

structure as 

(36) 

where bj for j = 1, 2, 3 are nonzero constants. Therefore, 

the NLSE with the perturbation terms shape up as 

while the ODE (3) simplifies to 
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(38) 

The ODE (38), along with the constraint condition 

(4), permits a translational Lie symmetry /x that 

integrates it to give the implicit quiescent optical 

solitons, which is in terms of quadratures as given by 

(32), where in this case:  

  (39) 

_________________________________________________________ 

3.7. Cubic-quintic-septic-nonic law 

For cubic-quintic-septic-nonic law of SPM, the nonlinear 

refractive index change is given as  

(46) 

where bj for 1 ≤ j ≤ 4 are real-valued constants. With this 

form of SPM the governing NLSE is  

The same constraint condition for the quiescent 

solitons to exist as given by (35) is also valid in this case. 

3.6. Triple-power law 

For triple power law, the structure of SPM takes the 

form:  

(41) 

with constants bj for j = 1, 2, 3. This gives the perturbed 

NLSE as 

(42) 

while the ODE (3) simplifies to 

(43) 

The translational Lie symmetry leads to the integral 
of the ODE to give the implicit quiescent optical solitons 

in quadratures as given by (32) with the constraint as in 

(35) where for this situation  

(47) 

while the ODE (3) simplifies to 

 (44) 

 (45) 
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 



SPQEO, 2025. V. 28, No 3. P. 335-345. 

Adem A.R., Biswas A. & Yildirim Y. Implicit quiescent optical soliton perturbation with nonlinear … 

339 

This ODE (48), along with the constraint condition 

(4), permits the translational Lie symmetry as in Kerr 

law. When implemented into the above ODE, the implicit 

quiescent optical solitons emerge as 

(49) 

3.8. Quadrupled-power law 

For quadrupled power-law of nonlinear refractive index 

change, the SPM is structured as 

(50) 

_________________________________________________________ 

for non-zero real-valued constants bj with 1 ≤ j ≤ 4. For 

this form of SPM, the governing NLSE takes the form:  

(51) 

while the ODE (3) simplifies to: 

 (52) 

The translational Lie symmetry leads to the integral 

of the ODE to give the implicit quiescent optical solitons 

in quadratures as given by (32) with the constraint as in 

(35) with A and B given by  

 (53) 

 (54) 

The parametric restriction given by (35) must hold for the quiescent solitons to exist. 
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3.9. Anti-cubic law 

For anti-cubic law of SPM, the functional F is given by 

(55) 

for non-zero constants bj with j =1, 2, 3. Therefore, the 

governing NLSE is written as 

so that the ODE given by (3) reads: 

By virtue of the translational Lie symmetry 

supported by the ODE (57), the implicit quiescent optical 

solitons is given by (32), along with the existence criteria 

(35), where, in this case  

(58) 

and  
__________________________________________________________________________________________________________________ 

3.11. Quadratic-cubic law 

For quadratic-cubic law of SPM, one writes: 

(65) 

3.10. Generalized anti-cubic law 

For the generalized anti-cubic law of nonlinearity, the 

SPM structure reads:  

(60) 

for non-zero constants bj with 1 ≤ j ≤ 3. With this form of 

SPM, the governing NLSE looks: 

so that the ODE given by (3) reads: 

      (62) 

for constants b1 and b2. Thus, the governing perturbed 

NLSE is of the following form:  

(66) 

By implementing the translational Lie symmetry that is supported by the above ODE (62), one can obtain the implicit 
quiescent optical solitons to the governing model (61) as given by (32) where  

 (63) 

     (64) 

provided the parameter constraint given by (35) remain valid. This guarantees the existence of the quiescent solitons. 

________________________________________________________________________________________________ 



SPQEO, 2025. V. 28, No 3. P. 335-345. 

Adem A.R., Biswas A. & Yildirim Y. Implicit quiescent optical soliton perturbation with nonlinear … 

341 

while the ODE (3) simplifies to 

(67) 

Using translational Lie symmetry, this ODE 

integrates to the implicit quiescent optical soliton 

solution in terms of Appell’s hypergeometric function as 

(68) 

where 

(69) 

(70) 

and 

(71) 

The constraint condition (26) in this case implies  

(72) 

along with 

(73) 

which together guarantees the existence of quiescent 

optical solitons. 

3.12. Genearlized quadratic-cubic law 

For the generalized quadratic–cubic law of nonlinearity, 

the SPM structure is 

(74) 

for non-zero constants b1 and b2. For m = 1, (74) falls 
back to the SPM structure of quadratic-cubic law, namely 

(65). Therefore, the perturbed NLSE for this SPM 

structure is given by 

(75) 

while the ODE (3) simplifies to 

(76) 

Using the translational invariance that is supported 
by the above ODE, one arrives at the implicit quiescent 

optical soliton given by (32), along with the parameter 

constraints (35), where 

(77) 

and 

(78) 

3.13. Quadratic-cubic-quartic law 

For quadratic–cubic–quartic law of refractive index 

change, the SPM structure is 

(79) 

for non-zero constants bj with j =1, 2, 3. The 

corresponding perturbed NLSE is 

while the ODE (3) simplifies to 

(81) 

Using the translational Lie symmetry supported by 

the ODE (81), one recovers the implicit quiescent optical 

solitons given by (32), along with the constraint (35), 

where 

  (82) 

and 

3.14. Generalized quadratic-cubic-quartic law 

The nonlinearity structure of SPM is  

(84) 

which means the perturbed NLSE is given by 

(85) 

while the ODE (3) simplifies to 

 (86) 
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3.15. Parabolic non-local law 

This law of noinlinearity has its functional F of the 

following form:  

(89) 

for real-valued constants bj with j =1, 2, 3. Therefore, the 

governing NLSE, along with its perturbation terms, is 

while the ODE (3) simplifies to: 

(91) 

For integrability, we must choose 

(92) 

This reduces equations (90) and (91), respectively, to 

(93) 

and 

Here in (93), the relation between the perturbation 

parameters λ and θj for j = 1, 2 is indicated in (4). Upon 

integration one recovers the implicit solution to (94) as 

(95) 

where  is elliptic integral of the first kind and is 

defined as follows:  

(96) 

with 

(97) 

and 

(98) 

The additional parameteric restrictions that stem 

from (95) are  

(99) 

 (100) 

and 

 (101) 

which must hold for the quiescent solitons to exist. 

The translational Lie symmetry when implemented leads to the quiescent optical solitons as given by (32), together 

with the constraints for the existence of these solitons as given by (35), where in this case:  

 (87) 

and 

     (88) 

________________________________________________________________________________________________ 
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3.16. LOG-law 

For log-law nonlinear refractive index, the SPM is given 

in the form:  

     (102) 

for non-zero constant b. In this case the governing model 

is given by  

 (103) 

while the ODE (3) simplifies to 

From the translational Lie symmetry that is 

supported by the above ODE one recovers the quiescent 

optical soliton solution as 

 (105) 

where the Dawson integral is defined by 

 (106) 

Another constraint that follows from (105), for the 

existence of solitons is given by  

 (107) 

3.17. Exponential law 

For exponential law of nonlinearity, the functional F 

reads:  

 (108) 

for non-zero b. In this case the perturbed NLSE is given 

by  

 (109) 

The corresponding ODE takes the form: 

 (110) 

which, by virtue of the translational Lie symmetry, 

integrates to  

 (111) 

with the exponential integral being defined as 

 (112) 

3.18. Saturating law 

For saturating law of nonlinearity, the nonlinear 

functional F takes the form:  

 (113) 

for non-zero constants bj with j =1, 2, 3. The perturbed 

NLSE is  

 (114) 

The corresponding ODE for ϕ(x) is 

Upon applying the translational symmetry to the 

above ODE (115), one recovers the implicit quiescent 

optical soliton as 

  (116) 

Finally, the constraint condition from the Gauss 

hypergeometric function gives  

 (117) 

for the quiescent optical solitons to exist. Another 

parametric constraint that comes out of (117) is given by  

 (118) 

4. Conclusions

This paper derived the implicit quiescent perturbed 

optical solitons for the NLSE with perturbation terms 

which appeared with arbitrary intensity. The CD was 
rendered to be nonlinear, while the temporal evolution 

was generalized from its linear counterpart. The 

ascertained results are a generalized version of the 

previously reported work, where the same model was 

addressed with linear temporal evolution [1]. Therefore, 

the results of this paper collapses to the ones in the 

previously reported work. Also, there are eighteen forms 

of SPM structures that were handled. The integration 

algorithm adopted in this work is Lie symmetry. The 

solitons solutions are all implicit and mostly appeared 

in terms of quadratures. Many of the solutions are in 

terms of a wide range of special functions. These are the 
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Gauss hypergeometric functions, Appell hypergeometric 

function, Dawson’s integral, elliptic integral of the first 

kind and exponential integral. The results, nevertheless, 

stand on a strong footing to proceed further along.  

The novelty of the current approach stems from its 
uniqueness. The Lie symmetry approach is a unique and 

one of the most powerful mathematical approaches that 

handles the recovered ODEs for every single form of 

SPM structure in its most unique form. The translational 

symmetry yielded solutions that are not recoverable by 

any additional approaches. Additional approaches that 

have been studied earlier to recover quiescent optical 

solitons implemented, namely the extended Jacobi’s 

elliptic function approach, extended trial function 

approach, methods of first integrals, sine-Gordon equation 

procedure, F-expansion method, Riccati equation 

expansion methodology, Kudryashov’s approach, G'/G-
expansion scheme do not reveal the unique structure of 

the solutions that are recoverable only by the usage of 

Lie symmetry. This makes the paper unique and 

consequently sheds light on the novelty of the work. 

The model can be modified and applied to various 

optoelectronic devices. A few these devices that would 

be immediately addressed are optical couplers, optical 

metamaterials, magneto-optic waveguides, Bragg 

gratings, fibers with differential group delay and 

dispersion-flattened fibers as well. The Lie symmetry 

approach would be implemented for each of these 
devices that would lead to the emergence of the quiescent 

optical solitons, explicit or implicit and/or in terms of 

quadratures or closed form solutions. The variety of 

results would be revealed with time and would be 

disseminated across the board after the results are all 

aligned with the pre-existing ones. 
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Неявне стаціонарне оптичне солітонне збурення з нелінійною хроматичною дисперсією та узагальненою 

часовою еволюцією, що має безліч структур фазової самодуляції за симетрією Лі  

A.R. Adem, A. Biswas & Y. Yildirim 

Анотація. У цій статті відновлено стаціонарні збурені оптичні солітони, що виникають з нелінійного рівняння 

Шредінгера з гамільтоніанами збурень довільної інтенсивності. Модель розглядається з узагальненою часовою 

еволюцією та нелінійною хроматичною дисперсією. Враховується вісімнадцять форм структур фазової 
самомодуляції. Інтегрування здійснюється застосуванням симетрії Лі. Також представлено параметричні 

обмеження, які гарантують існування таких солітонів. 
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